Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3641-3655    DOI: 10.1016/j.jia.2024.12.025
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil

Yuheng Wang1, 2, Furong Kang1, 7, Bo Yu3, Quan Long4, Huaye Xiong1, Jiawei Xie1, 2, Dong Li1, 2, Xiaojun Shi1, 2, 5, 6, Prakash Lakshmanan2, 8, 9, Yueqiang Zhang1, 2, 5, 6#, Fusuo Zhang2, 4

1 College of Resources and Environment, Southwest University, Chongqing 400716, China

2 Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China

3 Sichuan Dan Orange Morden Fruit Industry Co., Ltd., Meishan 620200, China

4 College of Resources and Environmental Science, China Agricultural University, Beijing 100196, China

5 State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400716, China

6 National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Chongqing 400716, China

7 Agricultural Technology Research and Service Center of Changshou District, Chongqing 401220, China

8 Sugarcane Research Institute/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China

9 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4066, Australia

 Highlights 
● Mg leaching results in soil Mg imbalance and depletion in citrus orchards.
● Mg fertilization alleviates the soil Mg imbalance in citrus plantation systems.
Mg leaching accounted for 12.1–42.4% of Mg fertilizer application in a citrus orchard.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

镁素(Mg)缺乏正成为亚热带和热带地区酸性土壤柑橘园中柑橘生产的主要限制因素。据推测,土壤中镁素淋洗损失及其养分不平衡可能是产量下降的主要原因然而,关于土壤中的镁素损失及养分平衡的研究较少。为此,本研究进行了一项为期2年的田间试验,以定量研究中国西南地区典型柑橘园中不同镁肥投入量土壤中的镁素损失。本研究中共设置四个处理,镁投入量分别为0Mg0、45Mg45、90Mg90、180(Mg180)kg MgO ha-1 yr-1。结果表明,与不施镁肥(Mg0)处理相比,施镁处理均能显著提高柑橘果实产量其增幅为4.1~16.4%。在Mg0处理中,土壤镁素的平均淋洗损失量为65.7 kg ha-1 yr-1;而在Mg180处理中,镁素淋洗量高达91.3 kg Mg ha-1 yr-1。平均而言,各施镁处理下镁素的淋洗损失量约占镁肥投入量的12.1~42.4%。因此,不同镁水平处理(Mg0Mg45Mg90Mg180柑橘园土壤镁平衡分别为-69.9-51.1-27.410.9 kg ha-1。同时,各处理中的土壤淋洗液pH均呈碱性,淋洗液钙和钾浓度含量均高于镁。因此,考虑到酸性土壤柑橘园中的镁及其它碱性离子淋洗损失,在湿润的亚热带地区柑橘生产系统中,施用镁肥或含镁土壤改良剂对于维持柑橘园土壤镁平衡、高产和果实品质至关重要。



Abstract  

Magnesium (Mg) deficiency is becoming a limiting factor for citrus production in acid soils of subtropical and tropical zones.  It is speculated that soil Mg leaching and thereby its imbalance may be a major cause of yield decline, yet Mg deficiency in citrus receives little attention.  A two-year field experiment was therefore conducted to quantify soil Mg leaching in a typical citrus orchard in China fertilized with varying levels of Mg (Mg0, no Mg fertilizer; Mg45, 45 kg MgO ha–1 yr–1; Mg90, 90 kg MgO ha–1 yr–1; Mg180, 180 kg MgO ha–1 yr–1).  Results showed that Mg application significantly increased citrus fruit yield by 4.1–16.4% compared with where MgO was not added.  The average amount of soil Mg leaching was 65.7 kg ha–1 yr–1 where no Mg fertilizer was added, while it reached up to 91.3 kg Mg ha–1 yr–1 where MgO was added at the rate of 180 kg ha–1.  Over the 4 treatments, Mg leaching accounted for 12.1–42.4% of the applied Mg fertilizer.  Mg leaching and its removal through harvested fruits resulted in an orchard soil Mg balance of –69.9, –51.1, –27.4 and 10.9 kg ha–1 in the Mg0, Mg45, Mg90 and Mg180, treatments, respectively.  The pH values of leachate from the acid soil were alkaline and it contained higher amounts of calcium and potassium than that of Mg.  Considering the high leaching of Mg from the acid soils of citrus orchards, applications of Mg fertilizer or Mg-fortified soil conditioner are vital to sustain soil Mg balance, high fruit yield and fruit quality in citrus production systems in humid subtropical regions.

Keywords:  magnesium        leaching        soil nutrient balance        citrus        yield  
Received: 20 August 2024   Online: 24 December 2024   Accepted: 24 October 2024
Fund: 

This work was supported by the International Magnesium Institute, Fujian Agriculture and Forestry University, China, the National Natural Science Foundation of China (32172676), the Danling Science & Technology Backyard Project, China (F2024236), the Dalian Xinmei Project, China (MY01-2023-2025-02) and the Sichuan Province Regional Innovation Cooperation Project, China (22QYCX0073).

About author:  Yuheng Wang, E-mail: wyh1996@email.swu.edu.cn; #Correspondence Yueqiang Zhang, E-mail: zhangyq82@swu.edu.cn

Cite this article: 

Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. 2025. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil. Journal of Integrative Agriculture, 24(9): 3641-3655.

Baier R, Ettl R, Hahn C, Gottlein A. 2006. Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps - a bioassay. Annals of Forest Science63, 339–348.

Bao S D. 2005. Soil and Agricultural Chemistry Analysis. China Agricultural Press, Beijing, China. pp. 25–200. (in Chinese)

Boaretto R M, Hippler F W R, Ferreira G A, Azevedo R A, Quaggio J A, Mattos D. 2020. The possible role of extra magnesium and nitrogen supply to alleviate stress caused by high irradiation and temperature in lemon trees. Plant and Soil457, 57–70.

Cakmak I, Yazici A M. 2010. Magnesium: A forgotten element in crop production. Better Crops94, 23–25.

Chaleshtori A A, Panahpour E, Iranipour R, Moezzi A. 2021. Diagnosing the nutritional balance of almond (Prunus sp.) orchardsusing DRIS and DOP methods. Journal of Plant Growth Regulation40, 1640–1651.

Chater J M, Garner L C. 2018. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). II. Effects on leaf nutrient status and fruit split, yield and size. Scientia Horticulturae, 242, 207–213.

Chowaniak M, Klima K, Niemiec M. 2016. Impact of slope gradient, tillage system, and plant cover on soil losses of calcium and magnesium. Journal of Elementology21, 361–372.

Cui M, Zeng L H, Qin W, Feng J. 2020. Measures for reducing nitrate leaching in orchards: A review. Environmental Pollution263, 114553.

Elrashidi M A, Hammer D, Mays M D, Seyold C A, Peaslee S D. 2007. Loss of alkaline earth elements by runoff from agricultural watersheds. Soil Science172, 313–332.

Ervio R. 1991. Acid-induced leaching of elements from cultivated soils. Annales Agriculturae Fenniae30, 311–344.

FAO (Food and Agriculture Organization of the United Nations). 2022, FAOSTAT: Statistical database. [2022-09-10]. https://www.fao.org/faostat/en/#data/PE

Felixhenningsen P, Zakosek H, Liu L W. 1989. Distribution and genesis of red and yellow soils in the central subtropics of Southeast China. Catena16, 73–89.

Garcia-Diaz A, Bienes R, Sastre B, Novara A, Gristina L, Cerda A. 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in Central Spain. Agriculture Ecosystems & Environment236, 256–267.

Ghiberto P J, Libardi P L, Trivelin P C O. 2015. Nutrient leaching in an Ultisol cultivated with sugarcane. Agricultural Water Management148, 141–149.

Golez N V, Kyuma K. 1997. Influence of pyrite oxidation and soil acidification on some essential nutrient elements. Aquacultural Engineering16, 107–124.

Gransee A, Führs H. 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil368, 5–21.

Grzebise W. 2011. Magnesium - food and human health. Journal of Elementology16, 199–323.

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Coulding K W T, Vitousek P M, Zhang F S. 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.

Hardter R, Rex M, Orlovius K. 2003. Effects of different Mg fertilizer sources on the magnesium availability in soils. Nutrient Cycling in Agroecosystems70, 249–259.

Haynes R J, Swift R S. 1986. Effects of soil acidification and subsequent leaching on levels of extractable nutrients in a soil. Plant and Soil95, 327–336.

Heming S D, Rowell D L. 1997. The estimation of losses of potassium and magnesium from chalky soils in southern England: Laboratory studies. Soil Use and Management13, 122–129.

Jabloun M, Schelde K, Tao F L, Olesen J E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. European Journal of Agronomy62, 55–64.

Jakobsen S T. 1992. Interaction between plant nutrients: 1. Theory and analytical procedures. Acta Agriculturae Scandinavica (Section B: Soil and Plant Science), 42, 208–212.

Jia Y M, Xu H, Wang Y W, Ye X, Lai N W, Huang Z R, Yang L T, Li Y, Chen L S, Guo J X. 2021. Differences in morphological and physiological features of citrus seedlings are related to Mg transport from the parent to branch organs. BMC Plant Biology21, 239.

Karn A, Zhao C Y, Yang F L, Cui J F, Gao Z L, Wang M Q, Wang F Z, Xiao H, Zheng J K . 2021. In-vivo biotransformation of citrus functional components and their effects on health. Critical Reviews in Food Science and Nutrition61, 756–776.

Koc J, Rafalowska M, Skwierawski A. 2008. Changes in magnesium concentrations and load in runoff water from nitrate vulnerable zones. Journal of Elementology13, 559–570.

Laird D, Fleming P, Wang B Q, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma158, 436–442.

Lemoine R, Sylvain La C, Rossitza A, Fabienne D, Thierry A, Nathalie P. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science4, 272–292.

Li Y, Han M Q, Lin F, Ten Y, Lin J, Zhu D H, Guo P, Weng Y B, Chen L S. 2015. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian Province, China. Journal of Soil Science and Plant Nutrition15, 615–628.

Liu K, Liu Z C, Zhou N, Shi X R, Lock T, Kallenbach R, Yuan Z Y. 2022. Diversity-stability relationships in temperate grasslands as a function of soil pH. Land Degradation & Development33,1704–1717.

Liu X M, Hu C X, Liu X D, Riaz M, Liu Y, Dong Z H, Tan Q L, Sun X C, Wu S W, Tan Z H. 2022. Effect of magnesium application on the fruit coloration and sugar accumulation of navel orange (Citrus sinensis Osb.). Scientia Horticulturae304, 111282.

Liu Y, Wang J, Liu D B, Li Z G, Zhang G S, Tao Y, Xie J, Pan J F, Chen F. 2014. Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards. PLoS ONE9, 1.

Loganathan P, Payn T W, Mitchell A D, Tillman R W. 1999. A sequential extraction method for the determination of dissolution of magnesium from fertilizers applied to pumice soils. Communications in Soil Science and Plant Analysis30, 199–211.

Lu M, Liu D Y, Shi Z M, Gao X P, Liang Y, Yao Z, Zhang W, Wang X Z, Chen X P. 2021. Nutritional quality and health risk of pepper fruit as affected by magnesium fertilization. Journal of the Science of Food and Agriculture101, 582–592.

Lundin L, Nilsson T. 2014. Initial effects of forest N, Ca, Mg and B large-scale fertilization on surface water chemistry and leaching from a catchment in central Sweden. Forest Ecology and Management331, 218–226.

Mitchell A D, Loganathan P, Payn T W, Tillman R W. 2000. Magnesium fertilizer dissolution rates in pumice soils under Pinus radiataAustralian Journal of Soil Research38, 753–767.

Mtolera I, She D L. 2018. Effect of effective microorganism and gypsum amendments on nutrient leaching pH, electrical conductivity, and Okra growth parameters under coastal saline soil. Communications in Soil Science and Plant Analysis49, 2327–2337.

Narwal R P, Kumar V, Singh J P. 1985. Potassium and magnesium relationship in cowpea (Vigna unguiculata (L.) Walp.). Plant and Soil86, 129–134.

Nawaz R, Parkpian P, Garivait H, Anurakpongsatorn P, DeLaune R D, Jugsujinda A. 2012. Impacts of acid rain on base cations, aluminum, and acidity development in highly weathered soils of Thailand. Communications in Soil Science and Plant Analysis43, 1382–1400.

Obreza T A, Morgan K T. 2010. Nutrition of Florida Citrus Trees. University of Florida, Florida. pp. 30–31.

de Oliveira M W, Trivelin P C O, Boaretto A E, Muraoka T, Motatti J. 2002. Leaching of nitrogen, potassium, calcium and magnesium in a sandy soil cultivated with sugarcane. Pesquisa Agropecuaria Brasileira37, 861–868.

Orlovius K, Mchoul J. 2015. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet. Journal of Plant Nutrition38, 2044–2054.

Parent S E, Barlow P, Parent L E. 2015. Nutrient balances of New Zealand kiwifruit (Actinidia deliciosa cv. Hayward) at high yield level. Communications in Soil Science and Analysis46, 256–271.

Roccuzzo G, Zanotelli D, Allegra M, Giuffrida A, Torrisi B F, Leonardi A, Leonardi A, Intrigliolo F, Tagliavini M. 2012. Assessing nutrient uptake by field grown orange trees. European Journal of Agronomy41, 73–80.

Rusu M, Mihai M, Tritean N, Mihai V C, Moldovan L, Ceclan A O, Russu F, Toader C. 2024. Protection and modeling in the use of S, Ca, and Mg alternatives for long-term sustainable fertilization systems. Agronomy-Basel14, 515.

Senbayram M, Gransee A, Wahle V, Thiel H. 2015. Role of magnesium fertilizers in agriculture: Plant–soil continuum. Crop & Pasture Science66, 1219–1229.

Siczek A, Kotowska U, Lipiec J, Nosalewicz A. 2008. Leaching of potassium, magnesium, manganese and iron in relation to porosity of tilled and orchard loamy soil. Acta Agriculturae Scandinavica (Section B: Soil and Plant Science), 58, 60–65.

Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th ed. USDA/NRCS, Washington, D.C.

Tosti G, Benincasa P, Farneselli M, Tei F, Guiducci M. 2014. Barley-hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk. European Journal of Agronomy54, 3–39.

Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. 2009. Nutrient imbalances in agricultural development. Science324, 1519–1520.

Wang L, Tang L L, Wang X, Chen F. 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil and Tillage Research110, 243–250.

Wang X Q, Liu X M, Wang W. 2022. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines project. Journal of Geochemical Exploration233, 106907.

Wang Y H, Long Q, Li Y Y, Kang F R, Fan Z H, Xiong H Y, Zhao H Y, Luo Y Y, Guo R, He X H, Lakshmanan P, Shi X J, Zhang F S, Zhang Y Q. 2022. Mitigating magnesium deficiency for sustainable citrus production: A case study in Southwest China. Scientia Horticulturae295, 110832.

Wang Z, Hassan M U, Nadeem F, Wu L Q, Zhang F S, Li X X. 2020. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Frontiers in Plant Science10, 1727.

Wu C X, Nie G, Zhang Z M, Wang G C, Gao L M, Wang J J. 2013. Influence of organic amendments on adsorption, desorption and leaching of methiopyrisulfuron in soils. Journal of Integrative Agriculture12, 1589–1597.

Xu H, Luo Z W, Hu W L, Jia Y M, Ye X, Li Y, Chen L S, Guo J X. 2022. Magnesium absorption, translocation, subcellular distribution and chemical forms in citrus seedlings. Tree Physiology42, 862–876.

Xie X L, Cakmak I, Wang S Y, Zhang F S, Guo S W. 2021. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop Journal9, 249–256.

Yang G H, Yang L T, Jiang H X, Li Y, Wang P, Chen L S. 2012. Physiological impacts of magnesium-deficiency in Citrus seedlings: Photosynthesis, antioxidant system and carbohydrates. Trees Structure and Function26, 1237–1250.

Yang J Y, He Z L, Yang Y G, Stoffella P, Yang X E, Banks D, Mishra S. 2007. Use of amendments to reduce leaching loss of phosphorus and other nutrients from a sandy soil in Florida. Environmental Science and Pollution Research14, 266–269.

Yang X F, Huang Y X, Liu K X, Zheng C. 2022. Effects of oyster shell powder on leaching characteristics of nutrients in low-fertility latosol in South China. Environmental Science and Pollution Research29, 56200–56214.

Yao Z, Zhang W S, Chen Y X, Zhang W, Liu D Y, Gao X P, Chen X P. 2021. Nitrogen leaching and grey water footprint affected by nitrogen fertilization rate in maize production: A case study of Southwest China. Journal of the Science of Food and Agriculture101, 6064–6073.

Ylaranta T, Uusikamppa J, Jaakkola A. 1996. Leaching of phosphorus, calcium, magnesium and potassium in barley, grass and fallow lysimeters. Acta Agriculturae Scandinavica (Section B: Soil and Plant Science), 46, 9–17.

Yousaf M, Bashir S, Raza H, Shah A N, Iqbal J, Arif M, Bukhari M A, Muhammad S, Hashim S, Alkahtani J, Alwahibi M S, Hu C X. 2021. Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi Journal of Biological Science28, 3021–3030.

Yuan D, Cai G. 1988. The Science of Karst Environment. Chongqing Science and Technology Publishing House, Chongqing, China. pp. 8–18. (in Chinese)

Zhang B G, Li Q, Cao J, Zhang C Y, Song Z, Zhang F S, Chen X P. 2017. Reducing nitrogen leaching in a subtropical vegetable system. Agriculture Ecosystems & Environment241, 133–141.

Zhang Y J, Guo W, Luan H A, Tang J W, Li R N, Li M Y, Zhang H Z, Huang S W. 2022. Long-term straw addition promotes moderately labile phosphorus formation, decreasing phosphorus downward migration and loss in greenhouse vegetable soil. Journal of Integrative Agriculture21, 2734–2749.

Zhao H Y, Dong Z H, Liu B, Xiong H Y, Guo C Y, Lakshmanan P, Wang X Z, Chen X P, Shi X J, Zhang, F S, Zhang, Y Q. 2023. Can citrus production in China become carbon-neutral? A historical retrospect and prospect. Agriculture Ecosystems Environment348, 108412.

[1] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[2] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[3] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[4] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[5] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[6] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[7] Chuandong Tan, Yadan Du, Xiaobo Gu, Wenquan Niu, Jinbo Zhang, Christoph Müller, Xuesong Cao. Aerated irrigation increases tomato production by improving soil nitrogen availability[J]. >Journal of Integrative Agriculture, 2025, 24(1): 322-338.
[8] Jinfeng Wang, Xueyun Yang, Shaomin Huang, Lei Wu, Zejiang Cai, Minggang Xu. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize–wheat cropping systems[J]. >Journal of Integrative Agriculture, 2025, 24(1): 290-305.
[9] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[10] Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3610-3621.
[11] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[12] ZHANG Zhi-peng, LI Zhen, HE Fang, LÜ Ji-juan, XIE Bin, YI Xiao-yu, LI Jia-min, LI Jing, SONG Jing-han, PU Zhi-en, MA Jian, PENG Yuan-ying, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang, LI Wei. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3380-3393.
[13] YANG Xu, ZHANG Jia-hua, YANG Shan-shan, WANG Jing-wen, BAI Yun, ZHANG Sha. Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2993-3005.
[14] GUAN Xian-jiao, CHEN Jin, CHEN Xian-mao, XIE Jiang, DENG Guo-qiang, HU Li-zhen, LI Yao, QIAN Yin-fei, QIU Cai-fei, PENG Chun-rui. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1278-1289.
[15] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
No Suggested Reading articles found!