Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2719-2731    DOI: 10.1016/j.jia.2024.09.021
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization and functions of temperature stress-associated microRNAs in invasive insect Bemisia tabaci Mediterranean cryptic species

Xiaona Shen1, 2, Jianyang Guo2, Fanghao Wan2, Zhichuang Lü2#, Jianying Guo2#, Wanxue Liu2

1 Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

 Highlights 
Bta-miR-998 and Bta-miR-129 are shown to be associated with temperature tolerance in Bemisia tabaci.
BtMGAT3 and BtRGS7, target genes of Bta-miR-129, affect heat resistance and cold resistance in B. tabaci respectively.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

随着当前国际贸易的发展和人员的频繁交流,生物入侵在全球范围内正呈现快速增长趋势。昆虫是变温动物,它们的地理分布很大程度上取决于温度耐受性的强弱。为了研究入侵种烟粉虱MED隐种的温度响应机制,我们采用miRNA-seq技术分别对三个具有不同环境温度条件的烟粉虱田间种群(吐鲁番哈尔滨和海口市进行sRNA高通量测序。结果表明在烟粉虱MED隐种中存在12个响应温度胁迫并发生差异表达的miRNA其中Bta-miR-998Bta-miR-129与温度耐受性相关。此外,我们预测并验证了Bta-miR-998Bta-miR-129靶基因中与耐温性相关的靶基因。结果显示高温种群中Bta-miR-129表达量降低,靶基因BtMGAT3表达增加并导致其耐热性提升。而低温种群中Bta-miR-129表达量增加,靶基因BtRGS7表达显著下调并使其耐寒性显著提升。本研究结果表明miRNA调控基因表达的调节方式是烟粉虱MED隐种中重要的温度响应机制揭示了miRNA在昆虫温度响应中的重要调节作用,为研究miRNA对昆虫基因表达的调节提供了新的途径。



Abstract  

With the development of international trade and frequent personnel exchanges, biological invasion is showing a rapidly growing trend worldwide.  Insects are ectothermic animals, so their geographical distribution is due largely to their high and low temperature tolerances.  To study the temperature response mechanisms of Bemisia tabaci Mediterranean cryptic species (MED), miRNA-seq technology was used to unravel the miRNA library of Btabaci MED in three field populations (TP, HB, and HK) from cities with different environmental temperatures.  We identified 12 differentially expressed miRNAs in response to temperature stress, and Bta-miR-998 and Bta-miR-129 were shown to be associated with temperature tolerance.  In addition, we predicted and verified the target genes associated with the temperature tolerance imparted by Bta-miR-998 and Bta-miR-129.  The results showed that the down-regulated target gene of Bta-miR-129, BtMGAT3, significantly reduced the heat tolerance and another down-regulated target gene, BtRGS7, affected the cold tolerance of Btabaci MED.  These results indicate that gene expression regulated by miRNAs is an important temperature response mechanism in Btabaci MED.  This study reveals the important regulatory role of miRNA in insect temperature adaptation and provides a new avenue for studying the regulation of insect gene expression by miRNA


Keywords:  miRNA       invasive insects        temperature stress        response mechanisms  
Received: 02 July 2024   Online: 24 September 2024   Accepted: 23 August 2024
Fund: 

This work was funded by the National Natural Science Foundation of China (32072494), the Fundamental Research Program of Shanxi Province, China (202203021212165) and the Shanxi Province Higher Education Technology Innovation Project, China (2022L363).

About author:  #Correspondence Zhichuang Lü, E-mail: lvzhichuang@caas.cn; Jianying Guo, E-mail: guojianying@caas.cn

Cite this article: 

Xiaona Shen, Jianyang Guo, Fanghao Wan, Zhichuang Lü, Jianying Guo, Wanxue Liu. 2025. Characterization and functions of temperature stress-associated microRNAs in invasive insect Bemisia tabaci Mediterranean cryptic species. Journal of Integrative Agriculture, 24(7): 2719-2731.

Barro P, Dinsdale A. 2009. Bemisia tabaci: A statement of species status. Annual Review of Entomology56, 1–19.

De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology56, 1–19.

Biswanath M, Adele S, Yunxia O, Askeland R W, Sugg S L, Fisher R A. 2020. Identification of MT1E as a novel tumor suppressor in hepatocellular carcinoma. Pathology Research and Practice216, 153213.

Byrne D N, Bellows T S J. 1991. Whitefly biology. Annual Review of Entomology36, 431–457.

Chakraborty A K, Pawelek J M. 2003. GnT-V, macrophage and cancer metastasis: A common link. Clinical and Experimental Metastasis20, 365–373.

Chu D, Zhang Y J, Cong B, Xu B Y, Wu Q J. 2005. Identification for Yunnan Q-biotype Bemisia tabaci population. Entomology Knowledge42, 54–56. (in Chinese)

Dai T M, Lü Z C, Liu W X, Wan F H, Hong X Y. 2017. The homology gene BtDnmt1 is essential for temperature tolerance in Invasive Bemisia tabaci Mediterranean cryptic species. Science Reports7, 3040.

Dai T M, Lü Z C, Wang Y S, Liu W X, Hong X Y, Wan F H. 2018. Molecular characterizations of DNA methyltransferase 3 and its roles in temperature tolerance in the whitefly, Bemisia tabaci Mediterranean. Insect Molecular Biology27, 123–132.

Deng Q, Liu X, Yang Z, Xie L. 2019. Expression of N-Acetylglucosaminyltransferase III promotes trophoblast invasion and migration in early human placenta. Reproductive Sciences26, 1373–1381.

Dinsdale A, Cook L, Riginos C, Buckley Y M, De Barro P. 2010. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America103, 196–208.

Ekuni A, Miyoshi E, Ko J H, Noda K, Kitada T, Ihara S, Endo T, Hino A, Honke K, Taniguchi N. 2002. A glycomic approach to hepatic tumors in N-acetylglucosaminyltransferase III (GnT-III) transgenic mice induced by diethylnitrosamine (DEN): Identification of haptoglobin as a target molecule of GnT-III. Free Radical Research36, 827–833.

Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S. 2003. MicroRNA targets in Drosophila. Genome Biology5, R1.

Fast I, Rosenkranz D. 2018. Temperature-dependent small RNA expression in Drosophila melanogasterRNA Biology15, 308–313.

Friedlander M R, Mackowiak S D, Li N, Chen W, Rajewsky N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research40, 37–52.

Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu S S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE6, e16061.

Huang J, Stewart A, Maity B, Hagen J, Fisher R A. 2014. RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated Dnmt1 degradation and promoting apoptosis. Oncogene33, 3604–3611.

Ji S X, Wang X D, Shen X N, Liang L, Liu W X, Wan F H, Lu Z C. 2020. Using RNA interference to reveal the function of chromatin remodeling factor ISWI in temperature tolerance in Bemisia tabaci Middle East-Asia Minor 1 cryptic species. Insects11, 113.

Krol J, Loedige I, Filipowicz W. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics11, 597–610.

Langmead B, Trapnell C, Pop M, Salzberg S L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology10, R25.

Lee R C, Feinbaum R L, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854.

HuennekeL F. 1997. Outlook for plant invasions: Interactions with other agents of global change. Assessment and Management of Plant Invasions8, 95–103.

Li J J, Shi Y, Lin G L, Yang C H, Liu T X. 2020. Genome-wide identification of neuropeptides and their receptor genes in Bemisia tabaci and their transcript accumulation change in response to temperature stresses. Insect Science28, 35–46.

Lü Z C, Wan F H. 2008. Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Comparative Biochemistry and Physiology (D: Genomics & Proteomics), 3, 257–262.

Lyons P J, Govaere L, Crapoulet N, Storey K B, Morin P J. 2016. Characterization of cold-associated microRNAs in the freeze-tolerant gall fly Eurosta solidaginis using high-throughput sequencing. Comparative Biochemistry and Physiology (D: Genomics & Proteomics), 20, 95–100.

Ma F Z, Lu Z C, Wang R, Wan F H. 2014. Heritability and evolutionary potential in thermal tolerance traits in the invasive Mediterranean cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE9, e103279.

Mahadav A, Kontsedalov S, Czosnek H, Ghanim M. 2009. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology39, 668–676.

Mooney H A, Cleland E E. 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America98, 5446–5451.

Peng W, Yu S, Handler A M, Tu Z, Saccone G, Xi Z, Zhang H. 2020. miRNA-1-3p is an early embryonic male sex-determining factor in the Oriental fruit fly Bactrocera dorsalisNature Communications11, 932.

Sailaja B, Voleti S R, Subrahmanyam D, Sarla N, Prasanth V V, Bhadana V P, Mangrauthia S K. 2014. Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativaRice Science21, 3–12.

Shen X N, Wang X D, Wan F H, Lü Z C, Liu W X. 2023. Gene expression analysis reveals potential regulatory factors response to temperature stress in Bemisia tabaci Mediterranean. Genes14, 1013.

Simberloff D. 2000. Nonindigenous Species: A Global Threat to Biodiversity and Stability. National Academy Press, Washington, D.C. pp. 325–334.

Storey J D. 2003. The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics31, 2013–2035.

Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I. 2008. MicroRNAs to NanogOct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455, 1124–1128.

Truscott M, Islam A B, Lightfoot J, López-Bigas N, Frolov M V. 2014. An intronic microRNA links Rb/E2F and EGFR signaling. PLoS Genetics24, e1004493.

Tseng M. 2003. A simple parafilm M-based method for blood-feeding Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology40, 588–589.

Varki A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology3, 97–130.

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics26, 136–138.

Wu L, Belasco J G. 2008. Let me count the ways: Mechanisms of gene regulation by miRNAs and siRNAs. Molecular Cell29, 1–7.

Xue Y T. 2018. Geographical distribution, genetic Structure of Bemisia tabaci (Hemiptera: Aleyrodidae) in China, and diversity of its secondary endosymbionts. Ph D thesis, Southwest University, China. (in Chinese)

Yang J, Platt L T, Maity B, Ahlers K E, Fisher R A. 2016. RGS6 is an essential tumor suppressor that prevents bladder carcinogenesis by promoting p53 activation and DNMT1 downregulation. Oncotarget7, 69159–69172.

Zhang L P, Zhang Y J, Zhang W J, Wu Q J, Xu B Y, Chu D. 2005. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Journal of Applied Entomology129, 121–128.

Zhao S, Liu M F. 2009. New progress in the research of microRNA’s mechanism of action. Scientia Sinica Vitae30, 109–113. (in Chinese)

Zheng Y X, Jiao B H. 2010. The biological formation of MiRNA and the mechanism of regulating gene expression. Chemistry Life30, 821–826.

Zhou L, Chen J, Li Z, Li X, Hu X, Yi H, Zhao X K, Liang C Z, Wang Y, Sun L, Shi M, Xu X H, Shen F, Chen M S, Han Z J, Peng Z Y, Zhai Q N, Chen J, Zhang Z F, Yang R L, et al. 2010. Integrated profiling of microRNAs and mRNAs: MicroRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE5, e15224.

Zhu B, Sun X, Nie X, Liang P, Gao X. 2020. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Insect Biochemistry Molecular Biology117, 103283.

[1] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[2] XIE Si-di, TIAN Ran, ZHANG Jun-jie, LIU Han-mei, LI Yang-ping, HU Yu-feng, YU Guo-wu, HUANG Yu-bi, LIU Ying-hong. Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2961-2980.
[3] SONG Xiao-fei, GE Dan-feng, XIE Yang, LI Xiao-li, SUN Cheng-zhen, CUI Hao-nan, ZHU Xue-yun, LIU Ren-yi, YAN Li-ying. Genome-scale mRNA and miRNA transcriptomic insights into the regulatory mechanism of cucumber corolla opening[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2603-2614.
[4] ZHANG Jiao-jiao, LI Ya-qi, SHI Mei, WANG Yu-sha, TANG Yao, WANG Xian-zhong. Cold plasma promotes Sertoli cell proliferation via AMPK-mTOR signaling pathway[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2700-2719.
[5] XIAO Shan, FANG Qi, LIU Ming-ming, ZHANG Jiao, WANG Bei-bei, YAN Zhi-chao, WANG Fang, David W. STANLEY, YE Gong-yin. Genome-wide characterization of miRNA and siRNA pathways in the parasitoid wasp Pteromalus puparum[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1106-1115.
[6] ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1137-1145.
[7] Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1731- 1742.
[8] LI Mei-zhen, XIAO Hua-mei, HE Kang, LI Fei. Progress and prospects of noncoding RNAs in insects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 729-747.
[9] SHI Gui-qing, FU Jing-ying, RONG Ling-jie, ZHANG Pei-yue, GUO Cheng-jin, XIAO Kai. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2369-2378.
[10] SUN Ping, ZHANG Zhen-lu, ZHU Qiu-fang, ZHANG Guo-ying, XIANG Ping, LIN Yu-ling, LAI Zhongxiong, LIN Jin-ke. Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1154-1164.
[11] MIAO Xiang-yang. Recent advances in understanding the role of miRNAs in exosomes and their therapeutic potential[J]. >Journal of Integrative Agriculture, 2017, 16(04): 753-761.
[12] ZHAO Xu, SHAN Ya-nan, ZHAO Yan, WANG Ai-rong, WANG Zong-hua. A novel Arabidopsis miRNA, ath-miR38-3P, is involved in response to Sclerotinia sclerotiorum infection[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2556-2562.
[13] MA Yan-jiao, YANG Ya-lan, SUN Wei, ZHOU Rong, LI Kui, TANG Zhong-lin. SFRP2 affects prenatal muscle development and is regulated by microRNA-1/206 in pigs[J]. >Journal of Integrative Agriculture, 2016, 15(1): 153-161.
[14] LI Jing, LIU Yong-xin, HAN Ying-peng, LI Yong-guang, GUO Mao-zu , LI Wen-bin. MicroRNA Primary Transcripts and Promoter Elements Analysis in Soybean (Glycine max L. Merril.)[J]. >Journal of Integrative Agriculture, 2013, 12(9): 1522-1529.
[15] ZHANG Li, XIE Xiu-juan, JIA Shan-gang, XIAO Mei, LIN Shu-dai, AN Li-long, LUO Wen, JIA Xinzheng, NIE Qing-hua , ZHANG Xi-quan. Characterization of MicroRNA* Species in Peking Duck Skin[J]. >Journal of Integrative Agriculture, 2013, 12(9): 1614-1619.
No Suggested Reading articles found!