Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2764-2777    DOI: 10.1016/j.jia.2023.05.025
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling
Xiaoxu Shen1, 2*, Yongtong Tian1, 2*, Wentao He1, 2, Can He1, 2, Shunshun Han1, 2, Yao Han1, 2, Lu Xia1, 2, Bo Tan3, Menggen Ma4, Houyang Kang5, Jie Yu6, Qing Zhu1, 2#, Huadong Yin1, 2#
1 Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
2 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China 
3 College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
4 College of Resources, Sichuan Agricultural University, Chengdu 611130, China
5 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
6 Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education/Sichuan Agricultural University, Chengdu 611130, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

鸡是一种重要的农业动物,其提供的骨骼肌是人类社会重要的蛋白质食物来源之一。骨骼肌的产量主要取决于肌纤维的发育,而该生物学过程受到许多基因,信号通路和非编码RNA的调控。microRNAs (miRNAs)是一类22个碱基左右的小非编码RNA,通常可以结合靶基因mRNA3’端非翻译区3’UTR)从而抑制靶基因的表达。有研究表明miR-181-5p家族(主要是miR-181a-5pmiR-181b-5p)可以调控哺乳动物骨骼肌的发育,然而miR-181-5p家族在鸡骨骼肌发育过程中的功能和调控机制仍然不清楚等。在本研究中,我们利用肌肉发育速度显著不同的蛋鸡与肉鸡这对极端模型,发现miR-181-5p家族在肌肉快速发育的肉鸡骨骼肌中高表达。然后我们采集鸡的骨骼肌卫星细胞来研究miR-181-5p家族在鸡骨骼肌体外肌生成中的作用,结果发现miR-181-5p家族显著促进成肌分化相关基因的RNA和蛋白表达,并且促进骨骼肌卫星细胞分化成多核的肌管,说明miR-181-5p家族在鸡骨骼肌发育过程中起正向的作用。随后靶基因预测发现miR-181-5p家族可能靶向TGF-β信号通路的重要受体TGFBR1,我们通过双荧光素酶报告等试验技术验证了miR-181-5p家族可以通过结合TGFBR1基因的3’UTR从而抑制TGFBR1基因的表达。TGFBR1TGF-β信号通路都是已知的肌肉发育限制因子,我们利用鸡骨骼肌卫星细胞验证发现TGFBR1基因负调控鸡骨骼肌体外肌生成过程。在TGF-β信号通路中,TGF-β蛋白通过结合细胞膜上的TGFBR1/2蛋白复合体将细胞外的TGF-β信号转导进入细胞质中,促进下游SMAD2/3蛋白的磷酸化并促使其进入细胞增强肌肉发育抑制基因的转录。我们通过蛋白质免疫印迹实验发现干扰TGFBR1会导致SMAD2/3蛋白的磷酸化程度降低,TGF-β信号通路转导受阻,此外miR-181-5p家族可以同时抑制TGFBR1的表达和SMAD2/3蛋白的磷酸化程度总之,我们的研究结果发现miR-181-5p家族可以通过靶向TGFBR1基因抑制TGF-β信号通路的转导,从而促进鸡骨骼肌的体外肌生成,表明miR-181-5p家族是鸡骨骼肌发育的促进因子,可能是导致肉鸡肌肉快速发育的重要调控因子之一,并可能成为分子标记辅助育种提高地方鸡肌肉产能的有效分子靶点



Abstract  

MicroRNAs (miRNAs) have been demonstrated to control chicken skeletal muscle growth, however, the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.  Here, our study identified the two chicken (Gallus gallus; Gga) miR-181-5p family members widely expressed in various tissues, specifically miR-181a-5p and miR-181b-5p.  Besides, the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.  Functionally, miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin (MyoG), myogenic differentiation 1 (MyoD1), and myosin heavy chain (MyHC), meanwhile accelerating the myotube formation of skeletal muscle satellite cells (SMSCs).  Mechanistically, miR-181a-5p and miR-181b-5p directly bind to the 3´ untranslated region (UTR) of the transforming growth factor beta receptor 1 (TGFBR1) mRNA, further reducing the expression of TGFBR1.  TGFBR1 is a key Transforming growth factor beta (TGF-β) signaling transduction receptor and had a negative function in muscle cell differentiation.  Furthermore, knockdown of TGFBR1 facilitated the expression of chicken myogenic factors, boosted myotube formation, and decreased the SMAD family member 2/3 (SMAD2/3) phosphorylation in chicken SMSCs.  SMAD2/3 are downstream of TGF-β signaling, and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.  Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-β signaling transduction, which resulted in promoting chicken skeletal muscle development

Keywords:  MiRNA-181-5p family        SMSCs        differentiation        TGFBR1        TGF-β signaling  
Received: 16 January 2023   Accepted: 19 March 2023
Fund: 

This study was economically supported by the National Key Research and Development Program of China (2022YFF10002020) and Sichuan Science and Technology Program, China (2021YFYZ0007 and 2021YFYZ0031).

About author:  Xiaoxu Shen, E-mail: shenxiaoxu@stu.sicau.edu.cn; Yongtong Tian, E-mail: tianyongtong@stu.sicau.edu.cn; #Correspondence Qing Zhu, E-mail: zhuqing@sicau.edu.cn; Huadong Yin, E-mail: yinhuadong@sicau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. 2024. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling. Journal of Integrative Agriculture, 23(8): 2764-2777.

Arnò B, Galli F. 2019. TNAP limits TGF-β-dependent cardiac and skeletal muscle fibrosis by inactivating the SMAD2/3 transcription factors. Journal of Cell Science132, jcs234948.

Bhushan R, Grünhagen J, Becker J, Robinson P N, Ott C E, Knaus P. 2013. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. The International Journal of Biochemistry & Cell Biology45, 696–705.

Buzala M, Janicki B. 2016. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poultry Science95, 2151–2159.

Cai Y, Yu X, Hu S, Yu J. 2009. A brief review on the mechanisms of miRNA regulation. GenomicsProteomics & Bioinformatics7, 147–154.

Cao X, Tang S, Du F, Li H, Shen X, Li D, Wang Y, Zhang Z, Xia L, Zhu Q, Yin H. 2020. miR-99a-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting MTMR3 in chicken. Genes11, 369.

Girardi F, Taleb A, Ebrahimi M, Datye A, Gamage D G, Peccate C, Giordani L, Millay D P. 2021. TGFβ signaling curbs cell fusion and muscle regeneration. Nature Communications12, 750.

Guo D, Ye Y, Qi J, Zhang L, Xu L, Tan X, Yu X, Liu Q, Liu J, Zhang Y, Ma Y, Li Y. 2016. MicroRNA-181a-5p enhances cell proliferation in medullary thymic epithelial cells via regulating TGF-β signaling. Acta Biochimica et Biophysica Sinica48, 840–849.

Hillege M M G, Shi A. 2022. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife11, e77610.

Huang W, Guo L, Zhao M, Zhang D, Xu H, Nie Q. 2019. The inhibition on MDFIC and PI3K/AKT pathway caused by miR-146b-3p triggers suppression of myoblast proliferation and differentiation and promotion of apoptosis. Cells8, 656.

Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. 2020. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. International Journal of Molecular Sciences21, 2092.

Li X, McFarland D C, Velleman S G. 2008. Effect of Smad3-mediated transforming growth factor-beta1 signaling on satellite cell proliferation and differentiation in chickens. Poultry Science87, 1823–1833.

Li X, Zhao C, Han B, Qu L, Liu C, Yang N, Lian L. 2021. Gga-miR-181a modulates ANP32A expression and inhibits MDCC-MSB-1 cell. In Vitro Cellular & Developmental BiologyAnimal57, 272–279.

Li Y, Zhai B, Yuan P, Fan S, Jin W, Li W, Sun G, Tian Y, Liu X, Kang X, Li G. 2022. MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets. Poultry Science101, 101557.

Lian L, Li X, Zhao C, Han B, Qu L, Song J, Liu C, Yang N. 2015. Chicken gga-miR-181a targets MYBL1 and shows an inhibitory effect on proliferation of Marek’s disease virus-transformed lymphoid cell line. Poultry Science94, 2616–2621.

Lian L, Qu L, Chen Y, Lamont S J, Yang N. 2012. A systematic analysis of miRNA transcriptome in Marek’s disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS ONE7, e51003.

Lin H J, Lin C W, Mersmann H J, Ding S T. 2020. Sterol-O acyltransferase 1 is inhibited by gga-miR-181a-5p and gga-miR-429-3p through the TGFβ pathway in endodermal epithelial cells of Japanese quail. Comparative Biochemistry and Physiology (Part B: Biochemistry & Molecular Biology), 240, 110376.

Liu Z, Han S, Shen X, Wang Y, Cui C, He H, Chen Y, Zhao J, Li D, Zhu Q, Yin H. 2019. The landscape of DNA methylation associated with the transcriptomic network in layers and broilers generates insight into embryonic muscle development in chicken. International Journal of Biological Sciences15, 1404–1418.

Melendez J, Sieiro D, Salgado D, Morin V, Dejardin M J, Zhou C. 2021. TGFβ signalling acts as a molecular brake of myoblast fusion. Nature Communications12, 749.

Mukund K, Subramaniam S. 2020. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews-Systems Biology and Medicine12, e1462.

Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. 2006. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology8, 278–284.

Nihashi Y, Umezawa K, Shinji S, Hamaguchi Y, Kobayashi H. 2019. Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens. Scientific Reports9, 16527.

Pasche B, Pennison M J, Jimenez H, Wang M. 2014. TGFBR1 and cancer susceptibility. Transactions of the American Clinical and Climatological Association125, 300–312.

Saliminejad K, Khorram Khorshid H R, Soleymani Fard S, Ghaffari S H. 2019. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology234, 5451–5465.

Schiaffino S, Dyar K A, Ciciliot S, Blaauw B, Sandri M. 2013. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS Journal280, 4294–4314.

Shen G Y, Ren H, Shang Q, Zhao W H, Zhang Z D, Yu X, Huang J J, Tang J J, Yang Z D, Liang D, Jiang X B. 2019. Let-7f-5p regulates TGFBR1 in glucocorticoid-inhibited osteoblast differentiation and ameliorates glucocorticoid-induced bone loss. International Journal of Biological Sciences15, 2182–2197.

Shen X, Cui C, Tang S, Han S, Zhang Y, Xia L, Tan B, Ma M, Kang H, Yu J, Zhu Q, Yin H. 2022. MyoG-enhanced circGPD2 regulates chicken skeletal muscle development by targeting miR-203a. International Journal of Biological Macromolecules222, 2212–2224.

Shen X, Wei Y, Liu W, You G, Tang S, Su Z, Du M, He J, Zhao J, Tian Y, Zhang Y, Ma M, Zhu Q, Yin H. 2021. A novel circular RNA circITSN2 targets the miR-218-5p/LMO7 axis to promote chicken embryonic myoblast proliferation and differentiation. Frontiers in Cell and Developmental Biology9, 748844.

Shi H, He Y, Li X, Du Y, Zhao J, Ge C. 2022. Regulation of non-coding RNA in the growth and development of skeletal muscle in domestic chickens. Genes13, 1033.

Sun Y, Wang Y, Zhao Y, Zou M, Peng X. 2021. Exosomal miR-181a-5p reduce Mycoplasma gallisepticum (HS strain) infection in chicken by targeting PPM1B and activating the TLR2-mediated MyD88/NF-κB signaling pathway. Molecular Immunology140, 144–157.

Vander Ark A, Cao J, Li X. 2018. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling52, 112–120.

Wang H, Zhang Q, Wang B, Wu W, Wei J, Li P, Huang R. 2018. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. European Journal of Cell Biology97, 257–268.

Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y, Cai L, Zhao Y. 2015. MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFβR1/Smad signaling pathway in NSCLC. Scientific Reports5, 17618.

Wang X, He Y, Mackowiak B, Gao B. 2021. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut70, 784–795.

Wu J, Yue B, Lan X, Wang Y, Fang X, Ma Y, Bai Y, Qi X, Zhang C, Chen H. 2019. MiR-499 regulates myoblast proliferation and differentiation by targeting transforming growth factor β receptor 1. Journal of Cellular Physiology234, 2523–2536.

Yin D, Shao Y, Yang K, Tu J, Song X, Qi K, Pan X. 2021. Fowl adenovirus serotype 4 uses gga-miR-181a-5p expression to facilitate viral replication via targeting of STING. Veterinary Microbiology263, 109276.

Yin H, He H, Shen X, Tang S, Zhao J, Cao X, Han S, Cui C, Chen Y, Wei Y, Wang Y, Li D, Zhu Q. 2020a. MicroRNA profiling reveals an abundant miR-200a-3p promotes skeletal muscle satellite cell development by targeting TGF-β2 and regulating the TGF-β2/SMAD signaling pathway. International Journal of Molecular Sciences21, 3274.

Yin H, He H, Shen X, Zhao J, Cao X, Han S, Cui C, Chen Y, Wei Y, Xia L, Wang Y, Li D, Zhu Q. 2020b. miR-9-5p inhibits skeletal muscle satellite cell proliferation and differentiation by targeting IGF2BP3 through the IGF2-PI3K/Akt signaling pathway. International Journal of Molecular Sciences21, 1655.

Yuan P, Fan S, Zhai B. 2022. miR-181a-5p can inhibit the proliferation and promote the differentiation of chicken primary myoblasts. British Poultry Science63, 1–8.

Zhang G, Chen F, Wu P, Li T, He M, Yin X, Shi H, Duan Y, Zhang T, Wang J, Xie K, Dai G. 2020. MicroRNA-7 targets the KLF4 gene to regulate the proliferation and differentiation of chicken primary myoblasts. Frontiers in Genetics11, 842.

Zhang J Q, Gao B W, Guo H X, Ren Q L, Wang X W, Chen J F, Wang J, Zhang Z J, Ma Q, Xing B S. 2020. miR-181a promotes porcine granulosa cell apoptosis by targeting TGFBR1 via the activin signaling pathway. Molecular and Cellular Endocrinology499, 110603.

Zhang Z, Gao Y, Xu M Q, Wang C J, Fu X H, Liu J B, Han D X, Jiang H, Yuan B, Zhang J B. 2019. miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene681, 45–51.

Zhao J, Zhao X, Shen X, Zhang Y, Zhang Y, Ye L, Li D, Zhu Q, Yin H. 2022. CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway. Poultry Science101, 101803.

Zheng Q, Zhang Y, Chen Y, Yang N, Wang X J, Zhu D. 2009. Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens. BMC Genomics10, 87.

Zhou D, Feng H, Yang Y. 2021. hiPSC modeling of lineage-specific smooth muscle cell defects caused by TGFBR1(A230T) variant, and its therapeutic implications for loeys-dietz syndrome. Circulation144, 1145–1159.

No related articles found!
No Suggested Reading articles found!