Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2704-2718    DOI: 10.1016/j.jia.2024.01.007
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Dynamic changes in weed abundance and biodiversity following different green manure establishment

He Yan1, 2*, Shuang Chen1, 2*, Jingkun Zhao3, Zhibing Zhang1, 2, Lunlun Chen1, Renmei Huang1, Yongmin Liu1, Xiaojun Shi1, 2, 4, Yuting Zhang1, 2#

1 College of Resources and Environment, Southwest University, Chongqing 400716, China

2 Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China

3 Chongqing Agricultural Technology Extension Station, Chongqing 401121, China

4 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China

 Highlights 
Poaceae demonstrated the highest efficacy in suppressing weeds.
Increasing weeds suppression was observed from November to May.
Green manures planted for more than 3 years yielded superior weed suppression.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  杂草通过与农作物竞争养分和光照等资源、增加农作物病虫害传播风险,从而对农业生产造成负面影响。绿肥种植可以有效的防控田间杂草的生长繁殖,然而其防控效果目前尚不清晰。本文采用田间试验和荟萃分析相结合的方式,对绿肥种植田间杂草密度、生物量、多样性指数和土壤杂草种子库的动态变化进行了研究,并对杂草群落组成的变化进行了评价。田间试验表明,绿肥对杂草的抑制能力表现出先增强后减弱的趋势,如在11月至5绿肥的旺盛生长期,杂草的密度和多样性逐渐下降;5至7绿肥逐渐枯萎时期,杂草密度和多样性逐渐增加;7月至9月,随着绿肥残体的腐解杂草最终自然生草处理无显著差异。同时发现,禾本科绿肥多年生黑麦草(Lolium perenne L.)对杂草的抑制效果最好,在1-7月均将杂草密度和生物量维持在较低水平,且有效降低了土壤杂草种子库数量;其次是多年生黑麦草和毛叶苕子混播处理、毛叶苕子(Vicia villosa Roth)单播处理和二月兰(Orychophragmus violaceus L.)单播处理。荟萃分析结果表明,连续三年种植绿肥后,杂草密度较种植一到两年有显著降低;并进一步证实了禾本科绿肥对杂草的抑制能力最强,混播绿肥并不能增强杂草抑制效果。对杂草群落组成的研究结果显示,绿肥对多年生杂草的抑制效果较弱,使得杂草群落中多年生杂草比例增加,如空心莲子草(Alternanthera sessilis (L.) DC)、酢浆草(Oxalis corniculata L.)和香附子(Cyperus rotundus L.等,这可能会增加恶性杂草的入侵风险。综上,本研究明确了绿肥绿肥种植时间和种类对杂草密度和多样性的影响,定量了绿肥生长周期内的杂草动态变化情况,旨在为可持续杂草管理措施的建立和推广提供理论支撑。

Abstract  

Weeds have a negative impact on agricultural production by competing with cultivated crops for resources and fostering conditions conducive to disease and insect pest dissemination.  Hence, optimal weed management is of paramount importance for sustainable agricultural.  In this study, the ability of four distinct green manure species to suppress weeds was determined in a field experiment conducted in Chongqing, Southwest China.  After cultivating the green manure species, the weed density and diversity were monitored over the following year.  The findings highlight a notable trend in the suppressive ability of green manures, with increased suppression observed from November to March, an optimal level observed from March to May, and a gradual decline observed thereafter.  Poaceae (Lolium perenne L.) demonstrated the highest efficacy in suppressing weeds.  The meta-analysis underscore the exceptional suppressive effects of poaceous green manures on weed as well and prove sustained planting for three or more consecutive years yielded superior weed suppression outcomes.  Green manure had the most prominent inhibitory effect on poaceae weeds, followed by Polygonaceae and Caryophyllaceae.  The field experiment also investigated the effect of green manures on weed community composition, they increased in the proportion of perennial weeds within these communities.  This study offers valuable insights that can guide policymakers, agricultural experts, and farmers in devising effective weed management strategies.  By highlighting the potential benefits of green manures and unraveling their nuanced impact, this study contributes to the arsenal of sustainable agricultural practices.

Keywords:  sustainable agriculture       cover cropping        green manure        weed        weed control        weed species  
Received: 25 August 2023   Online: 05 January 2024   Accepted: 09 November 2023
Fund: 
This study received funding from the China Agriculture Research System (CARS-22, Green Manure), the Natural Science Foundation Project from Chongqing Municipal Science and Technology Bureau, China (4322300357) and the Green Manure Cultivation Technology Project from Chongqing Agricultural Technology Extension Station.  We also thank the experimental technical guidance and assistance from Cheng Yongyi, the technician of College of Resources and Environment, Southwest University, China.
About author:  He Yan, E-mail: yanhe202204@163.com; Shuang Chen, E-mail: 369702238@qq.com; #Correspondence Yuting Zhang, E-mail: zyt2018@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

He Yan, Shuang Chen, Jingkun Zhao, Zhibing Zhang, Lunlun Chen, Renmei Huang, Yongmin Liu, Xiaojun Shi, Yuting Zhang. 2025. Dynamic changes in weed abundance and biodiversity following different green manure establishment. Journal of Integrative Agriculture, 24(7): 2704-2718.

Adeux G, Vieren E, Carlesi S, Bàrberi P, Munier-Jolain N, Cordeau S. 2019. Mitigating crop yield losses through weed diversity. Nature Sustainability2, 1018–1026.

Alvarez R, Steinbach H S, De Paepe J L. 2017. Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil and Tillage Research170, 53–65.

Booth B D, Swanton C J. 2002. Assembly theory applied to weed communities. Weed Science50, 2–13.

Brandsæter L O, Mangerud K, Andersson L, Børresen T, Brodal G, Melander B. 2020. Influence of mechanical weeding and fertilisation on perennial weeds, fungal diseases, soil structure and crop yield in organic spring cereals. Acta Agriculturae Scandinavica (Section B: Soil & Plant Science), 70, 318–332.

Brennan E B, Boyd N S, Smith R F, Foster P. 2009. Seeding rate and planting arrangement effects on growth and weed suppression of a legume-oat cover crop for organic vegetable systems. Agronomy Journal101, 979–988.

Campiglia E, Radicetti E, Brunetti P, Mancinelli R. 2014. Do cover crop species and residue management play a leading role in pepper productivity? Scientia Horticulturae166, 97–104.

Campiglia E, Radicetti E, Mancinelli R. 2015. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Research55, 416–425.

Ciaccia C, Testani, E, Amoriello T, Ceccarelli D. 2022. Weed community evolution under diversification managements in a new planted organic apricot orchard. AgricultureEcosystems & Environment335, 108014.

Falfushynska H, Khatib I, Kasianchuk N, Lushchak O, Horyn O, Sokolova I M. 2022. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Science of the Total Environment833, 155236.

Finney D M, White C M, Kaye J P. 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal108, 39–52.

Gao S, Zhou G, Chang D, Liang H, Nie J, Liao Y, Lu Y, Xu C, Liu J, Wu J, Han S, Wang H, Liu C, Lv Y, Huang Y, He C, Geng M, Wang J, He T, Li Z, et al. 2023. Southern China can produce more high-quality rice with less N by green manuring. ResourcesConservation and Recycling196, 107025.

Gómez-Fernández A, Milla R. 2022. How seeds and growth dynamics influence plant size and yield: Integrating trait relationships into ontogeny. Journal of Ecology110, 2684–2700.

Hu Y, Zhan P, Thomas B W., Zhao J, Zhang X, Yan H, Zhang Z, Chen S, Shi X, Zhang Y 2022. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Science of the Total Environment852, 158402.

Isik D, Kaya E, Ngouajio M, Mennan H. 2009. Weed suppression in organic pepper (Capsicum annuum L.) with winter cover crops. Crop Protection28, 356–363.

Jang S J, Mallory-Smith C, Kuk Y I. 2020. Inhibition of wheat growth planted after glyphosate application to weeds. Weed Science68, 373–381.

Jeschke J M. 2014. General hypotheses in invasion ecology. Diversity and Distributions20, 1229–1234.

Kruidhof H M, Bastiaans L, Kropff M J. 2009. Cover crop residue management for optimizing weed control. Plant and Soil318, 169–184.

Lawley Y E, Weil R R, Teasdale J R. 2011. Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agronomy Journal103, 137–144.

Liu R, Thomas B W, Shi X, Zhang X, Wang Z, Zhang Y. 2021. Effects of ground cover management on improving water and soil conservation in tree crop systems: A meta-analysis. Catena199, 105085.

Liu Z, Ge X, Fu Z, Liu J. 2020. Alternanthera philoxeroides invasion affects the soil seed bank of reed community. Environmental and Experimental Botany180, 104196.

MacLaren C, Storkey J, Menegat A, Metcalfe H, Dehnen-Schmutz K. 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development40, 1–29.

Manalil S, Chauhan B S. 2019. Interference of turnipweed (Rapistrum rugosum) and Mexican pricklepoppy (Argemone mexicana) in wheat. Weed Science67, 666–672.

Meiss H, Le Lagadec L, Munier-Jolain N, Waldhardt R, Petit S. 2010. Weed seed predation increases with vegetation cover in perennial forage crops. AgricultureEcosystems & Environment138, 10–16.

Mirsky S B, Ryan M R, Teasdale J R, Curran W S, Reberg-Horton C S, Spargo J T, Wells S M, Keene C L, Moyer J W. 2013. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the eastern United States. Weed Technology27, 193–203.

Monteiro A, Santos S. 2022. Sustainable approach to weed management: The role of precision weed management. Agronomy12, 118.

Morselli N, Puglia M, Pedrazzi S, Muscio A, Tartarini P, Allesina G. 2022. Energy, environmental and feasibility evaluation of tractor-mounted biomass gasifier for flame weeding. Sustainable Energy Technologies and Assessments50, 101823.

Muhammad I, Wang J, Sainju U M, Zhang S, Zhao F, Khan A. 2021. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma381, 114696.

Novara A, Stallone G, Cerdà A, Gristina L. 2019. The effect of shallow tillage on soil erosion in a semi-arid vineyard. Agronomy9, 257.

Osipitan O A, Dille J A, Assefa Y, Radicetti E, Ayeni A, Knezevic S Z. 2019. Impact of cover crop management on level of weed suppression: A meta-analysis. Crop Science59, 833–842.

Pittman K B, Barney J N, Flessner M L. 2020. Cover crop residue components and their effect on summer annual weed suppression in corn and soybean. Weed Science68, 301–310.

Rakotomanga D, Lacoma M, Dorel M, Damour G. 2021. Cover crops combined with soil tillage impact the spontaneous species density, richness and diversity in banana cover cropping systems. Agronomy for Sustainable Development41, 1–11.

Ranji A, Parashkoohi M G, Zamani D M, Ghahderijani M. 2022. Evaluation of agronomic, technical, economic, and environmental issues by analytic hierarchy process for rice weeding machine. Energy Reports8, 774–783.

Reberg-Horton S C, Grossman J M, Kornecki T S, Meijer A D, Price A J, Place G T, Webster T M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renewable Agriculture and Food Systems27, 41–48.

Restuccia A, Scavo A, Lombardo S, Pandino G, Fontanazza S, Anastasi U, Abbate C, Mauromicale G. 2020. Long-term effect of cover crops on species abundance and diversity of weed flora. Plants9, 1506.

Richardson D M, Pyšek P. 2007. Elton, CS 1958: The ecology of invasions by animals and plants. London: Methuen. Progress in Physical Geography31, 659–666.

Ringselle B, De Cauwer B, Salonen J, Soukup J. 2020. A review of non-chemical management of couch grass (Elymus repens). Agronomy10, 1178.

Rose M T, Cavagnaro T R, Scanlan C A, Rose T J, Vancov T, Kimber S, Kennedy I R, Kookana R S, Van Zwieten L. 2016. Impact of herbicides on soil biology and function. Advances in Agronomy136, 133–220.

Saini M, Price A J, Van Santen E. 2006. Cover crop residue effects on early-season weed establishment in a conservation-tillage corn–cotton rotation. In: 28th Southern Conservation Tillage Conference. Academia Environmental Sciences and Sustainability, Amarillo TX. pp. 175–178.

Scavo A, Fontanazza S, Restuccia A, Pesce G R, Abbate C, Mauromicale G. 2022. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development42, 93.

Scavo A, Restuccia A, Lombardo S, Fontanazza S, Abbate C, Pandino G, Anastasi U, Onofri A, Mauromicale G. 2020. Improving soil health, weed management and nitrogen dynamics by Trifolium subterraneum cover cropping. Agronomy for Sustainable Development40, 1–12.

Schwartz-Lazaro L M, Copes J T. 2019. A review of the soil seedbank from a weed scientists perspective. Agronomy9, 369.

Shahzad M, Farooq M, Jabran K, Hussain M. 2016. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Protection, 89, 161–169.

Sharkey S M, Hartig A M, Dang A J, Chatterjee A, Williams B J, Parker K M. 2022. Amine volatilization from herbicide salts: Implications for herbicide formulations and atmospheric chemistry. Environmental Science & Technology56, 13644–13653.

Simpson K J, Atkinson R R, Mockford E J, Bennett C, Osborne C P, Rees M. 2021. Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation. Functional Ecology35, 2168–2178.

Smith R G, Warren N D, Cordeau S. 2020. Are cover crop mixtures better at suppressing weeds than cover crop monocultures?. Weed Science68, 186–194.

Storkey J, Neve P. 2018. What good is weed diversity? Weed Research58, 239–243.

Sturm D J, Peteinatos G, Gerhards R. 2018. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research58, 331–337.

Suproniene S, Kadziene G, Irzykowski W, Sneideris D, Ivanauskas A, Sakalauskas S, Serbiak P, Svegzda P, Auskalniene O, Jedryczka M. 2019. Weed species within cereal crop rotations can serve as alternative hosts for Fusarium graminearum causing Fusarium head blight of wheat. Fungal Ecology37, 30–37.

Tosin M, Barbale M, Chinaglia S, Degli-Innocenti F. 2020. Disintegration and mineralization of mulch films and leaf litter in soil. Polymer Degradation and Stability179, 109309.

Turrini A, Caruso G, Avio L, Gennai C, Palla M, Agnolucci M, Tomei E P, Giovannetti M, Gucci R. 2017. Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Applied Soil Ecology116, 70–78.

Uchino H, Iwama K, Jitsuyama Y, Ichiyama K, Sugiura E, Yudate T 2011. Stable characteristics of cover crops for weed suppression in organic farming systems. Plant Production Science14, 75–85.

Yang Y, Zhang S, Wang S, Liu Z, Fang L, Zhang X, Liu R, Zhang J, Zhang Y, Shi X. 2020. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China. Acta Prataculturae Sinica29, 39. (in Chinese)

[1] Mohammad Nauman Khan, Yusheng Li, Yixue Mu, Haider Sultan, Amanullah Baloch, Ismail Din, Chengcheng Fu, Jiaqi Li, Zaid Khan, Sunjeet Kumar, Honghong Wu, Renato Grillo, Lixiao Nie. Recent advances in nano-enabled plant salt tolerance: Methods of application, risk assessment, opportunities and future prospects[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1611-1630.
[2] LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2345-2356.
[3] Sheng-Han-Erin CHANG, YI Xiao-yan, Johannes SAUER, YIN Chang-bin, LI Fu-duo. Explaining farmers’ reluctance to adopt green manure cover crops planting for sustainable agriculture in Northwest China[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3382-3394.
[4] Ismet Boz. Effects of environmentally friendly agricultural land protection programs: Evidence from the Lake Seyfe area of Turkey[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1903-1914.
No Suggested Reading articles found!