Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2732-2748    DOI: 10.1016/j.jia.2024.11.034
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Four signal chemicals can non-destructively induce enhanced resistance to Asian citrus psyllids in Citrus sinensis while maintaining balanced plant growth and development

Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng#

State Key Laboratory of Green Pesticides/Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China


 Highlights 
Non-destructive induction by four volatile signal chemicals, DMNT, TMTT, (E)-β-caryophyllene, and DMDS, can significantly enhance the activities of defensive enzymes and increase the contents of defensive phytochemicals in Citrus sinensis, while effectively improving resistance to the Asian citrus psyllid feeding.
DMNT, TMTT, (E)-β-caryophyllene, and DMDS can maintain the stability of the photosynthetic system in Citrus sinensis, regulate its capacity to capture, transmit, and distribute light energy, and significantly enhance its non-photochemical quenching ability.
DMNT, TMTT, (E)-β-caryophyllene, and DMDS also optimize the levels of functional nutrients in C. sinensis, reduce stomatal area and aperture, and maintain a stable leaf water content and leaf mass per unit area.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

亚洲柑橘木虱(Asian citrus psyllidACP)是柑橘作物的重要害虫,主要以柑橘韧皮部汁液为食,可传播柑橘黄龙病,对柑橘产业构成了严威胁。具有植物间通讯功能的挥发性信号能够在最小程度影响植物生长的前提下,有效增强受体植物对植食性昆虫的抗性。(E)-4,8-二甲基-1,3,7-壬三烯(DMNT)、(E,E)-4,8,12-三甲基-1,3,7,11-三烯(TMTT)、(E)-β-石竹烯和二甲基二硫醚(DMDS番石榴与甜橙间交流的信号分子,然而对它们能否在不影响植物生长的情况下增强柑橘对ACP成虫的抗取食能力尚不明确。因此,本研究评价了化学信号DMNTTMTT(E)-β-石竹烯和DMDS的非损伤诱导甜橙ACP取食能力,防御性植物化学物质、防御酶、功能性营养物质、光系统II的光能利用和分配、光合色素、生长和叶片气孔的影响。研究结果表明,化学信号DMNTTMTT(E)-β-石竹烯和DMDS的非损伤诱导可增强柑橘ACP的取食抗性,进一步测定发现诱导后的甜橙中防御酶多酚氧化酶(PPO)的活性增强,总酚、单宁和萜类防御性植物化学物质的含量增加。其中,DMNTDMDS在诱导抗性方面的作用比TMTT(E)-β-石竹烯更为显著。不同暴露诱导期柑橘叶绿素荧光参数和光合色素的变化特征显示,这些化学信号能够维持柑橘光合系统的稳定性,调节其捕获、传输和分配光能的能力,显著增强柑橘的非光化学猝灭能力(Y(NPQ)此外,这些化学信号的非损伤诱导可以优化柑橘叶片功能营养物质的水平,主要表现为可溶性糖、脯氨酸或可溶性蛋白的上调,气孔面积和气孔开度的减小,维持叶片含水量和LMA的稳定,在增强柑橘抗ACP取食能力的同时保持其健康生长。这些结果充分证明,化学信号DMNTTMTT(E)-β-石竹烯和DMDS的非损伤诱导不仅可以增强柑橘对ACP的抗性,而且能够保持植物抗性与生长之间的平衡,避免对柑橘生长造成毁灭性危害,展现出与其他有害生物治理策略相结合的潜力,为实现作物的集体保护提供了新的视角。本研究为化学信号分子诱导剂的开发和农业系统中ACP的防治提供了理论支持和实践指导。



Abstract  

Asian citrus psyllid (ACP) is a significant pest of citrus crops that can transmit citrus Huanglongbing (HLB) by feeding on the phloem sap of citrus plants, which poses a significant threat to citrus production.  Volatile signal chemicals with plant communication functions can effectively enhance the resistance of recipient plants to herbivorous insects with minimal impacts on plant growth.  While (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecene (TMTT), (E)-β-caryophyllene, and dimethyl disulfide (DMDS), are known as signaling molecules in guava-sweet orange communication, whether these four chemical signals can enhance the resistance of Citrus sinensis to feeding by ACP adults with no apparent costs in terms of plant growth remains unclear.  Therefore, this study measured the effect of non-damaging induction by DMNT, TMTT, (E)-β-caryophyllene, and DMDS on the ability of Csinensis to resist feeding by ACP, as well as their impacts on the defensive phytochemicals, defensive enzymes, functional nutrients, Photosystem II’s utilization and allocation of light energy, photosynthetic pigments, growth conditions, and leaf stomatal aperture in Csinensis.  The results indicate that non-damaging induction by these four chemicals can enhance the activity of the defensive enzyme polyphenol oxidase (PPO) and increase the contents of total phenols, tannins, and terpenoid defensive phytochemicals within Csinensis, thereby enhancing the resistance of Csinensis to ACP feeding.  Specifically, DMNT and DMDS exhibit more significant effects in inducing resistance compared to TMTT and (E)-β-caryophyllene.  The characteristics of chlorophyll fluorescence parameters and changes in photosynthetic pigments in Csinensis during different post-exposure induction periods revealed these chemicals can maintain the stability of the photosynthetic system in Csinensis and regulate its capacity to capture, transmit, and distribute light energy, which significantly enhances the non-photochemical quenching ability of Csinensis.  In addition, detailed measurements of the water content, leaf mass per unit area (LMA), functional nutrients (soluble protein, soluble sugar, and amino acids), and stomatal parameters in Csinensis leaves further indicated that the non-destructive induction by these chemicals can optimize the levels of functional nutrients in Csinensis, primarily manifesting as the upregulation of soluble sugars, proline, or soluble proteins, and reduction of stomatal area and aperture, which maintains a stable leaf water content and LMA, thereby enhancing resistance to ACP while sustaining the healthy growth of Csinensis.  These results fully substantiate that the non-damaging induction by the signal chemicals DMNT, TMTT, (E)-β-caryophyllene, and DMDS can enhance the resistance of Csinensis to ACP feeding while maintaining the balance between pest resistance and growth.  This balance prevents any catastrophic effects on the growth of Csinensis, so these agents can potentially be integrated with other pest management strategies for the collective protection of crops.  This study provides theoretical support and assistance for the development of signal chemical inducers for the prevention and management of ACP in agricultural systems.

Keywords:  volatile signals       defense priming        Asian citrus psyllid resistance        Citrus sinensis        defensive metabolites        physiology and biochemistry  
Received: 22 July 2024   Online: 26 November 2024   Accepted: 24 October 2024
Fund: This work was financially supported by the National Natural Science Foundation of China (31971424).
About author:  Wei Wang, Mobile: +86-18819465384, E-mail: 18819465384@163.com; #Correspondence Xinnian Zeng, Mobile: +86-13500020060, E-mail: zengxn@scau.edu.cn

Cite this article: 

Wei Wang, Chuxiao Lin, Yirong Zhang, Shiyan Liu, Jiali Liu, Xinnian Zeng. 2025. Four signal chemicals can non-destructively induce enhanced resistance to Asian citrus psyllids in Citrus sinensis while maintaining balanced plant growth and development. Journal of Integrative Agriculture, 24(7): 2732-2748.

Avdiushko S A, Ye X S, Kuc J. 1993. Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology42, 441–454.

Bakhoum G S, Sadak M S, Thabet M S. 2023. Induction of tolerance in groundnut plants against drought stress and Cercospora leaf spot disease with exogenous application of arginine and sodium nitroprusside under field conditions. Journal of Soil Science and Plant Nutrition23, 6612–6631.

Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. 2019. Defense of scots pine against sawfly eggs (Diprion pini) is primed by exposure to sawfly sex pheromones. Proceedings of the National Academy of Sciences of the United States of America116, 24668–24675.

Bosch M, Berger S, Schaller A, Stintzi A. 2014. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sextaBMC Plant Biology14, 257.

Brosset A, Yu H, Blande J D. 2022. Airborne cues accelerate flowering and promote photosynthesis in Brassica rapaJournal of Ecology111, 578–588.

Bruce T J A. 2014. Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science5, 349.

Buswell W, Schwarzenbacher R E, Luna E, Sellwood M, Chen B N, Flors V, Pétriacq P, Ton J. 2018. Chemical priming of immunity without costs to plant growth. New Phytologist218, 1205–1216.

Dai J, Gao H, Dai Y, Zou Q. 2004. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biology6, 171–177.

Endara M J, Coley P D, Ghabash G, Nicholls J A, Dexter K G, Donoso D A, Stone G N, Pennington R T, Kursar T A. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proceedings of the National Academy of Sciences of the United States of America114, 7499–7505.

Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology70, 527–557.

Erb M, Veyrat N, Robert C A M, Xu H, Frey M, Ton J, Turlings T C J. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications6, 6273.

Fassnacht F E, Stenzel S, Gitelson A A. 2015. Non-destructive estimation of foliar carotenoid content of treespecies using merged vegetation indices. Journal of Plant Physiology176, 210–217.

Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. 2019. Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves. Journal of Proteome Research18, 191–203.

George J, Kanissery R, Ammar E, Cabral I, Markle L T, Patt J M, Stelinski L L. 2020. Feeding behavior of Asian citrus psyllid [Diaphorina citri (Hemiptera: Liviidae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration graph recordings. Insects11, 48.

Gould N, Reglinski T, Spiers M, Taylor J. 2008. Physiological trade-offs associated with methyl jasmonate-induced resistance in Pinus radiataCanadian Journal of Forest Research38, 677–684.

Hall D G, Richardson M L, Ammar E, Halbert S E. 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicate146, 207–223.

Hao D, Zhou J, Qu J, Lu H, Li L, Yao X, Chen J, Liu J, Guo H, Zong J. 2024. Screening of environmental stimuli for the positive regulation of stomatal aperture in centipedegrass. Plant Physiology and Biochemistry213, 108838.

Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M. 2018. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiology and Molecular Biology of Plants24, 993–1004.

He Y, Jiang W, Ding W, Chen W, Zhao D. 2022. Effects of PVY-infected tobacco plants on the adaptation of Myzus persicae (Hemiptera: Aphididae). Insects13, 1120.

Horowitz A R, Ghanim M, Roditakis E, Nauen R, Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science93, 893–910.

Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. 2020. (Z)–3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensisPlant Molecular Biology103, 287–302.

Hu Y, Ding Y, Cai B, Qin X, Wu J, Yuan M, Wan S, Zhao Y, Xin X. 2022. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host and Microbe30, 518–529.

van Hulten M, Pelser M, van Loon L C, Pieterse C M, Ton J. 2006. Costs and benefits of priming for defense in ArabidopsisProceedings of the National Academy of Sciences of the United States of America103, 5602–5607.

Jing T, Du W, Gao T, Wu Y, Zhang N, Zhao M, Jin J, Wang J, Schwab W, Wan X, Song C. 2021. Herbivore induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. PlantCell and Environment44, 1178–1191.

Jing T, Zhang N, Gao T, Zhao M, Jin J, Chen Y, Xu M, Wan X, Schwab W, Song C. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensisPlantCell and Environment42, 1352–1367.

Jiang Y, Ye J, Niinemets Ü. 2021. Dose-dependent methyl jasmonate effects on photosynthetic traits and volatile emissions: Biphasic kinetics and stomatal regulation. Plant Signaling and Behavior16, e1917169.

Karasov T L, Chae E, Herman J J, Bergelson J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell29, 666–680.

Karban R. 2011. The ecology and evolution of induced resistance against herbivores. Functional Ecology25, 339–347.

Kegge W, Pierik R. 2010. Biogenic volatile organic compounds and plant competition. Trends in Plant Science15, 126–132.

Kheam S, Gallinger J, Ninkovic V. 2024. Communication between undamaged plants can elicit changes in volatile emissions from neighbouring plants, thereby altering their susceptibility to aphids. PlantCell and Environment47, 1543–1555.

Kramer D M, Johnson G, Kiirats O, Edwards G E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research79, 209–218.

Kumar A, Lakshmanan V, Caplan J, Powell D, Czymmek K, Levia D, Bais H. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant Journal72, 692–706.

Kumar K S, Dahms H U, Lee J S, Kim H C, Lee W C, Shin K H. 2014. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicology and Environmental Safety104, 51–71.

Li X, Ji Y, Sheng Y, Sheng L, Guo W, Wang H, Zhang Y. 2022. Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances drought resistance in wheat seedlings. Plant Growth Regulation98, 477–490.

Ling S, Qiu H, Xu J, Gu Y, Yu J, Wang W, Liu J, Zeng X. 2022a. Volatile dimethyl disulfide from Guava plants regulate developmental performance of Asian Citrus Psyllid through activation of defense responses in neighboring orange plants. International Journal of Molecular Sciences23, 10271.

Ling S, Rizvi S A H, Xiong T, Liu J, Gu Y, Wang S, Zeng X. 2022b. Volatile signals from guava plants prime defense signaling and increase jasmonate-dependent herbivore resistance in neighboring citrus plants. Frontiers in Plant Science13, 833562.

Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L. 2018. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports8, 1–11.

Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse C M J, Pozo M J, Ton J, van Dam N M, Conrath U. 2016. Recognizing plant defense priming. Trends in Plant Science21, 818–822.

Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology68, 485–512.

Miao Y, Bi Q, Qin H, Zhang X, Tan N. 2020. Moderate drought followed by rewatering initiates beneficial changes in the photosynthesis, biomass production and Rubiaceae-type cyclopeptides (RAs) accumulation of Rubia yunnanensisIndustrial Crops and Products148, 112284.

Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules19, 16240–16265.

Monson R K, Weraduwage S M, Rosenkranz M, Schnitzler J P, Sharkey T D. 2021. Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia197, 885–902.

Müller P, Li X, Niyogi K K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology125, 1558–1566.

Najar B, Pistelli L, Marchioni I, Pistelli L, Muscatello B, Leo M D, Scartazza A. 2020. Salinity-induced changes of photosynthetic performance, lawsone, VOCs, and antioxidant metabolism in Lawsonia inermis L. Plants9, 1797.

Niinemets Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology82, 453–469.

Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A, Suzuki T, Ozawa R, Matsunaga S, Seki M, Ueda M, Sako K, Galis I, Arimura G. 2022. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. Plant Physiology189, 922–933.

Pompeiano A, Reyes T H, Moles T M, Villani M, Volterrani M, Guglielminetti L, Scartazza A. 2017. Inter-and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation. Physiologia Plantarum161, 385–399.

Poorter H, Niinemets U, Poorter L, Wright I J, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist182, 565–588.

Qiu N, Lu Q, Lu C. 2003. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiaticaNew Phytologist159, 479–486.

Rady M M, Sadak M S, El-Lethy S R, Abd El-Hamid E M, Abdelhamid M T. 2015. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. Journal of Horticultural Science and Biotechnology90, 195–202.

Rao M J, Wu S, Duan M, Wang L. 2021. Antioxidant metabolites in primitive, wild, and cultivated citrus and their role in stress tolerance. Molecules26, 5801.

Sadak M S. 2016. Mitigation of salinity adverse effects on wheat by grain priming with melatonin. International Journal of ChemTech Research9, 85–97.

Sadak M S, Orabi S A. 2015. Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research8, 333–345.

Schuman M C, Baldwin I T. 2016. The layers of plant responses to insect herbivores. Annual Review of Entomology61, 373–394.

Shi J, Wang J, Lv H, Peng Q, Schreiner M, Baldermann S, Lin Z. 2021. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. Horticulture Research8, 95.

Sjokvist E, Lemcke R, Kamble M, Turner F, Blaxter M, Havis N H, Lyngkjar M F, Radutoiu S. 2019. Dissection of Ramularia leaf spot disease by integrated analysis of barley and Ramularia collo-cygni transcriptome responses. Molecular Plant-Microbe Interactions32, 176–193.

Snoeck S, Guayazán-Palacios N, Steinbrenner A D. 2022. Molecular tug-of-war: Plant immune recognition of herbivory. Plant Cell34, 1497–1513.

Spínola M P, Costa M M, Prates J A M. 2023. Studies on the impact of selected pretreatments on protein solubility of Arthrospira platensis microalga. Agriculture13, 221.

Stirbet A. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology104, 236–257.

Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir K M, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences of the United States of America111, 7144–7149.

Tang J, Shen H, Zhang R, Yang F, Hu J, Che J, Dai H, Tong H, Wu Q, Zhang Y, Su Q. 2023. Seed priming with rutin enhances tomato resistance against the whitefly Bemisia tabaciPesticide Biochemistry and Physiology194, 105470.

Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. 2019. Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Frontiers in Plant Science10, 785.

Velikova V, Loreto F. 2005. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. PlantCell and Environment28, 318–327.

Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. 2014. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signaling and Behavior9, e29517.

Wang D, Wang Q, Sun X, Gao Y, Ding J. 2020. Potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechioidea) leaf infestation effects performance of conspecific larvae on harvested tubers by inducing chemical defenses. Insects11, 633.

Wang M, Ji Q, Liu P, Liu Y. 2022. Guarding and hijacking: Stomata on the move. Trends in Plant Science27, 736–738.

Wang W, Wang X, Liao H, Feng Y, Guo Y, Shu Y, Wang J. 2022. Effects of nitrogen supply on induced defense in maize (Zea mays) against fall armyworm (Spodoptera frugiperda). International Journal of Molecular Sciences23, 10457.

Wang W, Yan Y, Li Y, Huang Y, Zhang Y, Yang L, Xu X, Wu F, Du B, Mao Z, Shan T. 2023. Nutritional value, volatile components, functional metabolites, and antibacterial and cytotoxic activities of different parts of Millettia speciosa Champ., a medicinal and edible plant with potential for development. Plants12, 3900.

War A R, Paulraj M G, Ahmad T, Buhroo A A, Hussain B, Ignacimuthu S, Sharma H C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior7, 1306–1320.

Wise R R, Sassenrath-Cole G F, Percy R G. 2000. A comparison of leaf anatomy in field-grown Gossypium hirsutum and
GbarbadenseAnnals of Botany86, 731–738.

Worrall D, Holroyd G H, Moore J P, Glowacz M, Croft P, Taylor J E, Paul N D, Roberts M R. 2012. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist193, 770–778.

Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, et al. 2004. The worldwide leaf economics spectrum. Nature428, 821–827.

Xiao Y, Qian J, Hou X, Zeng L, Liu X, Mei G, Liao Y. 2023. Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils. Journal of Integrative Agriculture22, 1782–1796.

Xiang R, Liu T, Chu Z, Wang X, Zheng B, Jia H. 2023. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and physico-chemical characteristics of four bloom-forming algae species. Journal of Environmental Management336, 117559.

Xu C, Ma Y, Tian Z, Luo Q, Zheng T, Wang B, Zuo Z. 2022. Monoterpene emissions and their protection effects on adult Cinnamomum camphora against high temperature. Trees36, 711–721.

Yang D, Chen Y, Wang R, He Y, Ma X, Shen J, He Z, Lai H. 2024. Effects of exogenous abscisic acid on the physiological and biochemical responses of Camellia oleifera seedlings under drought stress. Plants13, 225.

Yassin M, Ton J, Rolfe S A, Valentine T A, Cromey M, Holden N, Newton A C. 2021. The rise, fall and resurrection of chemical-induced resistance agents. Pest Management Science77, 3900–3909.

Ye M, Song Y Y, Long J, Wang R L, Baerson S R, Pan Z Q, Zhu-Salzman K, Xie J F, Cai K Z, Luo S M, Zeng R S. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences of the United States of America110, E3631–E3639.

Xiao Y, Qian J, Hou X, Zeng L, Liu X, Mei G, Liao Y. 2023. Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils. Journal of Integrative Agriculture22, 1782–1796.

Zhang H, Wu Z, Xiao H. 2016. Leaf stable carbon isotope composition in Picea schrenkiana var. tianschanica in relation to leaf physiological and morphological characteristics along analtitudinal gradient. Journal of Mountain Science13, 1217–1228.

Zhang P, Li X, Cui Z, Xu D. 2022. Morphological, physiological, biochemical and molecular analyses reveal wounding-induced agarwood formation mechanism in two types of Aquilaria sinensis (Lour.) Spreng. Industrial Crops and Products178, 114603.

Zheng H, Xie W, Wang S, Wu Q, Zhou X, Zhang Y. 2017. Dynamic monitoring (B versus Q) and further resistance status of Q-type Bemisia tabaci in China. Crop Protection94, 115–122.

Zheng S, Liu W, Luo J, Wang L, Zhu X, Gao X, Hua H, Cui J. 2022. Helicoverpa armigera herbivory negatively impacts Aphis gossypii populations via inducible metabolic changes. Pest Management Science78, 2357–2369.

Zhou H, Ashworth K, Dodd L C. 2023. Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato. Journal of Experimental Botany74, 5327–5340.

No related articles found!
No Suggested Reading articles found!