Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (05): 1154-1164    DOI: 10.1016/S2095-3119(17)61654-X
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis)
SUN Ping1, ZHANG Zhen-lu3, ZHU Qiu-fang1, ZHANG Guo-ying1, XIANG Ping1, LIN Yu-ling1, LAI Zhong-xiong1, LIN Jin-ke1, 2
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
2 Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 College of Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Received  19 April, 2017    Accepted  9 May, 2017

© 2018, CAAS. All rights reserved. Published by Elsevier Ltd.
doi:

Abstract  MicroRNAs (miRNAs) are endogenous non-protein-coding small RNAs that play crucial and versatile regulatory roles in plants.  Using a computational identification method, we identified 55 conserved miRNAs in tea (Camellia sinensis) by aligning miRNA sequences of different plant species with the transcriptome library of tea strain 1005.  We then used quantitative real-time PCR (qRT-PCR) to analyze the expression of 31 identified miRNAs in tea leaves of different ages, thereby verifying the existence of these miRNAs and confirming the reliability of the computational identification method.  We predicted which miRNAs were involved in catechin synthesis using psRNAtarget Software based on conserved miRNAs and catechin synthesis pathway-related genes.  Then, we used RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) to obtain seven miRNAs cleaving eight catechin synthesis pathway-related genes including chalcone synthase (CHS), chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR), and flavanone 3-hydroxylase (F3H).  An expression analysis of miRNAs and target genes revealed that miR529d and miR156g-3p were negatively correlated with their targets CHI and F3H, respectively.  The expression of other miRNAs was not significantly related to their target genes in the catechin synthesis pathway.  The RLM-RACE results suggest that catechin synthesis is regulated by miRNAs that can cleave genes involved in catechin synthesis. 
Keywords:  tea (Camellia sinensis)        miRNA        catechin synthesis        gene  
Received: 19 April 2017   Accepted:
Fund: 

This work was funded by the National Natural Science Foundation of China (31170651), the Project from the Ministry of Agriculture, China (KCa16022A), and the Major Science and Technology Project in Fujian Province, China (2015NZ 0002-1).

Corresponding Authors:  Correspondence LAI Zhong-xiong, E-mail: laizx01@163.com; LIN Jin-ke, E-mail: ljk213@163.com    

Cite this article: 

SUN Ping, ZHANG Zhen-lu, ZHU Qiu-fang, ZHANG Guo-ying, XIANG Ping, LIN Yu-ling, LAI Zhongxiong, LIN Jin-ke. 2018. Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis). Journal of Integrative Agriculture, 17(05): 1154-1164.

Akter A, Islam M M, Mondal S I, Mahmud Z, Jewel N A, Ferdous S, Amin M R, Rahman M M. 2014. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi Journal of Biological Sciences, 21, 3–12.

Bartel D P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

Cheng X Q, Fu L X, Yi Y Z, Kai G, Si Q H, Li N, Zhi M Y. 2007. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene, 395, 49.

Cui L G, Shan J X, Shi M, Gao J P, Lin H X. 2014. The miR156-spl9-dfr pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal for Cell & Molecular Biology, 80, 1108–1117.

Das A. 2010. Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). American Journal of Plant Sciences, 1, 77–86.

Devi K J, Chakraborty S, Deb B, Rajwanshi R. 2016. Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequences (GSSs) of coffee (Coffea arabica). Plant Gene, 6, 30–42.

Ding Y, Zhu C, Wang S, Liu H. 2011. Regulation of miRNAs response to heavy metal stress in plant. Process in Biochemistry and Biophysics, 38, 1106–1110.

Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature, 411, 494-498.

Fan K, Fan D, Ding Z, Su Y, Wang X. 2015. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis). Plant Physiology & Biochemistry, 97, 350–360.

Giménez R. 2006. Beneficial effects of green tea - a review. Journal of the American College of Nutrition, 25, 79–99.

Hong G, Wang J, Zhang Y, Hochstetter D, Zhang S, Pan Y, Shi Y, Xu P, Wang Y. 2014. Biosynthesis of catechin components is differentially regulated indark-treated tea (Camellia sinensis). Plant Physiology & Biochemistry, 78, 49–52.

Jeyaraj A, Chandran V, Gajjeraman P. 2014. Differential expression of microRNAs in dormant bud of tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Reports, 33, 1053–1069.

Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4, 205.

Lim L P, Bartel D P. 2003. Vertebrate microRNA genes. Science, 299, 501.

Lin J, Zheng J, Chen R, Chen C. 2005. Screening specific tea plant germplasm resources (Camellia sinensis) with high egcg content. Acta Agronomica Sinica, 31, 1511–1517. (in Chinese)

Lin Y. 2011. Studies on cloning, expression and regulation of sod gene family during somatic embryogenesis in Dimocarpus longan. Ph D thesis, Fujian Agriculture and Forestry University, Fuzhou. (in Chinese)

Lin Y S, Tsai Y J, Tsay J S, Lin J K. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Journal of Agricultural & Food Chemistry, 51, 1864.

Ma C. 2007. Molecular cloning and expression analysis of chalcone isomerase, flavonol synthase and leucoanthocyantin reducase genes of teaplant (Camellia sinensis). MSc thesis, Chinese Academy of Agricultural Sciences, China. (in Chinese)

Millar A A, Waterhouse P M. 2005. Plant and animal microRNAs: Similarities and differences. Functional & Integrative Genomics, 5, 129–135.

Moalembeno D, Tamari G, Leitnerdagan Y, Borochov A, Weiss D. 1997. Sugar-dependent gibberellin-induced chalcone synthase gene expression in Petunia corollas. Plant Physiology, 113, 419–424.

Mondal T K, Bhattacharya A, Laxmikumaran M, Ahuja P S. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue & Organ Culture, 76, 195–254.

Pang Y, Dixon R A. 2007. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiology, 145, 601–615.

Prabu G R, Mandal A K A. 2010. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genomics, Proteomics & Bioinformatics, 08, 113–121.

Punyasiri P A, Abeysinghe I S, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer T C. 2004. Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathways. Archives of Biochemistry & Biophysics, 431, 22–30.

Puzey J R, Kramer E M. 2009. Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene, 448, 46–56.

Qiu C X, Xie F L, Zhu Y Y, Guo K, Huang S Q, Nie L, Yang Z M. 2007. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Comparative & Functional Genomics, 395, 49–61.

Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Ziosi V, Hellens R P, Costa G, Allan A C. 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 13, 53.

Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. 2002. Prediction of plant microRNA targets. Cell, 110, 513–520.

Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav S K, Singh B, Ahuja P S. 2008. Singh K, Rani A, Kumar S. An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with catechins content in tea (Camellia sinensis (L.) O. Kuntze). Tree Physiology, 28, 1349–1356.

Song C, Fang J, Chen W, Lei G, Nicholas K K, Ma Z. 2010a. MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS ONE, 5, e10861.

Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z. 2010b. Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biology, 12, 927–934.

Sun M L, Wang Y S, Yang D Q, Wei C L, Gao L P, Xia T, Shan Y, Lou Y. 2010. Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis. Chinese Bulletin of Botany, 45, 579–587. (in Chinese)

Takeuchi A, Matsumoto S, Hayatsu M, 1994. Chalcone synthase from Camellia sinensis: Isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant & Cell Physiology, 35, 1011.

Taylor L P, Grotewold E. 2005. Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8, 317–323.

Wang C, Fang J, Cao X, Yang G. 2009. Metabolism of proanthocyanidins in gape. Chinese Agricultural Science Bulletin, 25, 169–173. (in Chinese)

Wang D, Will T E, Wang Y, Wan X, Zhang J. 2012. Encapsulated nanoepigallocatechin-3-gallate and elemental Selenium nanoparticles as paradigms for nanochemoprevention. International Journal of Nanomedicine, 7, 1711–1721.

Wang L, Fan Y. 2007. Process of microRNA in plant. Journal of Agricultral Science and Technology, 9, 18–23.

Wang R, Zhou W, Jiang X. 2008. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. Journal of Agricultural & Food Chemistry, 56, 2694–2701.

Xia T, Gao L. 2009. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 42, 2899–2908. (in Chinese)

Xie F L, Huang S Q, Guo K, Xiang A L, Zhu Y Y, Nie L, Yang Z M. 2007. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Letters, 581, 1464–1474.

Xu Z, Xie C X. 2010. Advances on plant microRNA and stresses response. Hereditas, 32, 1018–1030.

Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J K, Sun Q. 2007. Cloning and characterization of microRNAs from wheat (Triticum aestivum). Genome Biology, 8, R96.

Yue M C, Tsao T M, Cheng C L, Lin K C, Ming K W. 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis). Journal of the Science of Food & Agriculture, 91, 1111–1117.

Zhang B, Pan X, Anderson T A. 2006a. Identification of 188 conserved maize microRNAs and their targets. FEBS Letters, 580, 3753–3762.

Zhang B, Pan X, Cannon C H, Cobb G P, Anderson T A. 2006b. Conservation and divergence of plant microRNA genes. Plant Journal, 46, 243–259.

Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb G P, Anderson T A. 2007. Identification of cotton microRNAs and their targets. Gene, 397, 26–37.

Zhang L Q, Wei K, Wang L Y, Cheng H, Liu B Y, Gong W Y. 2014. The structure and single nucleotide polymorphism analysis of chalcone synthase genes in tea plant (Camellia sinenesis). Scientia Agricultura Sinica, 47, 133–144. (in Chinese)

Zhang W, Liang Y, Zhang F, CHeng C, Zhang Y, Cheng R, Weng B. 2004. Effects on the yield and quality of oolong tea by covering with shading net. Journal of Tea Science, 24, 276–282. (in Chinese)

Zhang W, Luo Y, Li S. 2006. MicroRNA and its role in plant growth and development. Plant Physiology Communications, 42, 1015–1020.

Zhao L. 2013. Transcription factors analysis in flavonoid biosynthesis pathway and gene function of aivr in tea plant (Camellia sinensis). Ph D thesis, Anhui Agricultural University, China. (in Chinese)

Zheng X Q, Jin J, Chen H, Du Y Y, Ye J H, Lu J L, Lin C, Dong J J, Sun Q Y, Wu L Y, Liang Y R. 2010. Effect of ultraviolet b irradiation on accumulation of catechins in tea (Camellia sinensis). African Journal of Biotechnology, 7, 3283–3287.
 
[1] LIU Yu-xin, LI Fan, GAO Liang, TU Zhang-li, ZHOU Fei, LIN Yong-jun. Advancing approach and toolbox in optimization of chloroplast genetic transformation technology[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1951-1966.
[2] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[3] XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1412-1423.
[4] XU Chun-mei, XIAO De-shun, CHEN Song, CHU Guang, LIU Yuan-hui, ZHANG Xiu-fu, WANG Dan-ying.

Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions [J]. >Journal of Integrative Agriculture, 2023, 22(3): 923-934.

[5] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[6] XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background[J]. >Journal of Integrative Agriculture, 2023, 22(1): 52-62.
[7] CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin[J]. >Journal of Integrative Agriculture, 2023, 22(1): 31-40.
[8] SANG Zhi-qin, ZHANG Zhan-qin, YANG Yu-xin, LI Zhi-wei, LIU Xiao-gang, XU Yunbi, LI Wei-hua. Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2477-2491.
[9] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[10] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[11] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[12] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[13] LI Zhi-qi, Xie Qian, YAN Jia-hui, CHEN Jian-qing, CHEN Qing-xi. Genome-wide identification and characterization of the abiotic-stress-responsive lipoxygenase gene family in diploid woodland strawberry (Fragaria vesca)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1982-1996.
[14] WU Hong-liang, CAI An-dong, XING Ting-ting, HUAI Sheng-chang, ZHU Ping, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai. Integrated management of crop residue and nutrients enhances new carbon formation by regulating microbial taxa and enzymes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1772-1785.
[15] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
No Suggested Reading articles found!