Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1738-1753    DOI: 10.1016/j.jia.2024.01.033
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice

Zhian Dai1, Rongwei Yuan1, Xiangxia Yang1, Hanxiao Xi1, Ma Zhuo1, Mi Wei1, 2#

1 School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

2 Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China

 Highlights 
Delftia tsuruhatensis DYX29 is a key bacterium in response to salinity changes.
DYX29 has the ability to tolerate salt, reduce salt and promote plant growth.
DYX29 promotes salt tolerance in rice in several ways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
盐度是影响全球作物生长和产量的主要环境胁迫。应用耐盐植物促生长菌(HT-PGPB)促进作物生长、降低盐胁迫的不利影响已得到广泛认可。本研究通过对秋茄树(Kandelia ovate)繁殖体中微生物群落的分析,确定了能够响应盐度变化的关键内生细菌。通过纯培养获得在氯化钠(NaCl)浓度为5%(w/v)的高盐条件下正常生长的Delftia tsuruhatensis DYX29菌株。DYX29可以合成铁载体(单位值为87.6%)和ACC(1-氨基环丙烷-1-羧酸)脱氨酶(29 U L-1),并能在高盐度条件下更多合成胞内氨基酸和生长素。接种DYX29能显著提高水稻的耐盐性。在盐胁迫下,添加DYX29通过多种途径有效促进了水稻幼苗的生长。水稻幼苗的生物量(干重)提高了32.9%,促进可溶性糖的积累提高23.1%。水稻叶片CAT和POD活性分别提高了37.8%和88.2%。同时,它还能维持根和叶的离子稳态。另外,水稻根系中促生长激素IAA、BL、ABA和SA的表达分别上调27.8%、69.5%、123.7%和28.6%。本研究为从红树林生态系统中筛选有价值的耐盐益生菌以促进盐胁迫下作物的生长提供了启示,也可为新型耐盐益生菌生物肥料的开发及相关机制的研究提供有益的参考。


Abstract  
Salinity is a major environmental stress affecting crop growth and productivity globally.  The application of halo-tolerant plant growth-promoting bacteria (HT-PGPB) has been widely recognized to promote crop growth and reduce the adverse effects of salt stress.  In this study, key endophytic bacteria that can respond to salinity changes were identified by analyzing the microbial community in propagules of Kandelia obovata.  Delftia tsuruhatensis DYX29, a strain that can grow normally under high salinity conditions with a sodium chloride (NaCl) concentration of 5% (w/v), was obtained by pure culture.  DYX29 can produce siderophores with a siderophore unit value of 87.6% and 1-aminocyclopropane-1-carboxylate (ACC) deaminase with 29 U L–1, and its synthesis of intracellular amino acids and auxin can be induced by high salinity.  Inoculation with DYX29 can remarkably promote the salt tolerance of rice.  Under salt stress, the addition of DYX29 was shown to effectively promote the growth of rice seedlings through a variety of approaches.  It increased the biomass of rice seedlings by 32.9% (dry weight) and promoted the accumulation of soluble sugars by 23.1%.  It also increased catalase (CAT) and peroxidase (POD) activities in rice leaves by 37.8 and 88.2%, respectively.  Moreover, it maintained the ionic homeostasis in rice roots and leaves.  In addition, it upregulated the expression of growth-promoting hormones, such as indole-3-acetic acid (IAA), brassinolide (BL), abscisic acid (ABA), and salicylic acid (SA), in rice roots by 27.8, 69.5, 123.7 and 28.6%, respectively.  This study provides inspiration for screening valuable salt-tolerant pro-biotic bacteria from mangrove ecosystems and their use for crop growth promotion under salt stress.  It can also provide useful references for the development of new salt-tolerant and pro-biotic biofertilizers, as well as the investigation of the related mechanisms.


Keywords:  salt stress       halo-tolerant plant growth-promoting bacteria       Delftia tsuruhatensis       microbial community  
Received: 15 August 2023   Online: 24 January 2024   Accepted: 27 November 2023
Fund: 
This work was supported by funds from the National Natural Science Foundation of China (32270296), the Natural Science Foundation of Guangdong Province, China (2024A1515010498), the Shenzhen Postdoctoral Scientific Research, China (77000-42100004), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University, China.
About author:  #Correspondence Mi Wei, E-mail: weim29@mail.sysu.edu.cn

Cite this article: 

Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. 2025. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice. Journal of Integrative Agriculture, 24(5): 1738-1753.

Abdelaziz M E, Abdelsattar M, Abdeldaym E A, Atia M A, Mahmoud A W M, Saad M M, Hirt H. 2019. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Scientia Horticulturae256, 108532.

Agler M T, Ruhe J, Kroll S, Morhenn C, Kim S T, Weigel D, Kemen E M. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology14, e1002352.

Ahanger M A, Aziz U, Alsahli A A, Alyemeni M N, Ahmad P. 2019. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularisBiomolecules10, 42.

Ali W S, Al-Bayaty A J A. 2023. Enhancing nutrient elements and phenolic compounds in Mentha Piperita L. through the application of nano iron oxide and Vitamin B3 (Niacin) spraying treatments. Journal of Survey in Fisheries Sciences10, 5307–5317.

Bashan Y, Kamnev A A, de-Bashan L E. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils49, 465–479.

Berga M, Zha Y, Székely A J, Langenheder S. 2017. Functional and compositional stability of bacterial metacommunities in response to salinity changes. Frontiers in Microbiology8, 948.

Challabathula D, Analin B, Mohanan A, Bakka K. 2022. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and-tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Journal of Plant Physiology268, 153583.

Cook M T. 1907. The embryology of Rhizophora mangleBulletin of the Torrey Botanical Club34, 271–277.

Ding Z J, Yan J Y, Li C X, Li G X, Wu Y R, Zheng S J. 2015. Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal, 84, 56–69.

Duan B, Li L, Chen G, Su-Zhou C, Li Y, Merkeryan H, Liu W, Liu X. 2021. 1-Aminocyclopropane–1-carboxylate deaminase-producing plant growth-promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L.). Frontiers in Plant Science12, 706990.

Dukare A, Paul S. 2021. Biological control of Fusarium wilt and growth promotion in pigeon pea (Cajanus cajan) by antagonistic rhizobacteria, displaying multiple modes of pathogen inhibition. Rhizosphere17, 100278.

Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. 2016. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. International Journal of Phytoremediation18, 1113–1121.

Feller I C, Lovelock C E, Berger U, McKee K L, Joye S B, Ball M. 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Science2, 395–417.

Feng Q, Cao S, Liao S, Wassie M, Sun X, Chen L, Xie Y. 2023. Fusarium equiseti-inoculation altered rhizosphere soil microbial community, potentially driving perennial ryegrass growth and salt tolerance. Science of the Total Environment871, 162153.

Fisher R M, Henry L M, Cornwallis C K, Kiers E T, West S A. 2017. The evolution of host-symbiont dependence. Nature Communications8, 15973.

Frank J A, Reich C I, Sharma S, Weisbaum J S, Wilson B A, Olsen G J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied Environmental Microbiology74, 2461–2470.

Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. 2011. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta233, 175–188.

Gentry A. 1987. The botany of mangroves. Annals of the Missouri Botanical Garden, 74, 460–462.

Ghosh S K, Bera T, Chakrabarty A M. 2020. Microbial siderophore - A boon to agricultural sciences. Biological Control144, 104214.

Golldack D, Li C, Mohan H, Probst N. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science5, 151.

Gond S, Torres M, Bergen M, Helsel Z, White J. 2015. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomeransLetters in Applied Microbiology60, 392–399.

Graziano G, Merlino A. 2014. Molecular bases of protein halotolerance. Biochimica et Biophysica Acta (BBA) (Proteins and Proteomics), 1844, 850–858.

Guo X H, He L, Zhang Y, Wang Y, Huang S X, Liu Y S. 2022. Kiwifruit (Actinidia chinensis ‘Hongyang’) cytosolic ascorbate peroxidases (AcAPX1 and AcAPX2) enhance salinity tolerance in Arabidopsis thalianaJournal of Integrative Agriculture21, 1058–1070.

Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology10, 1506.

Han J, Wei Y, Yan C, An S. 2011. The vivipary characteristic of Anabasis elatior and its ecological adaptation. Acta Ecologica Sinica31, 2662–2668. (in Chinese)

Hou Q, Wang C, Guo H, Xia Z, Ye J, Liu K, Yang Y, Hou X, Liu H, Wang J. 2015. Draft genome sequence of Delftia tsuruhatensis MTQ3, a strain of plant growth-promoting rhizobacterium with antimicrobial activity. Genome Announcements3, 00822–00837.

Hu D D, Dong S, Zhang J, Zhao B, Ren B, Liu P. 2022. Endogenous hormones improve the salt tolerance of maize (Zea mays L.) by inducing root architecture and ion balance optimizations. Journal of Agronomy Crop Science208, 662–674.

Jayakannan M, Bose J, Babourina O, Shabala S, Massart A, Poschenrieder C, Rengel Z. 2015. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in ArabidopsisJournal of Experimental Botany66, 1865–1875.

Joshi A C. 1933. A suggested explanation of the prevalence of vivipary on the sea-shore. Journal of Ecology21, 209–212.

Joshi S, Nath J, Singh A K, Pareek A, Joshi R. 2022. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum174, e13702.

Kaur S, Egidi E, Qiu Z, Macdonald C A, Verma J P, Trivedi P, Wang J, Liu H, Singh B K. 2022. Synthetic community improves crop performance and alters rhizosphere microbial communities. Journal of Sustainable Agriculture and Environment1, 118–131.

Kim H, Lee K K, Jeon J, Harris W A, Lee Y H. 2020. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome8, 1–17.

Lee S Y, Primavera J H, Dahdouh-Guebas F, McKee K, Bosire J O, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C. 2014. Ecological role and services of tropical mangrove ecosystems: A reassessment. Global Ecology Biogeography23, 726–743.

Li H, La S, Zhang X, Gao L, Tian Y. 2021. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. The ISME Journal15, 2865–2882.

Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J. 2018. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences19, 443.

Liu X, Yang C, Yu X, Yu H, Zhuang W, Gu H, Xu K, Zheng X, Wang C, Xiao F. 2020. Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Science of the Total Environment721, 137807.

Malešević M, Di Lorenzo F, Filipić B, Stanisavljević N, Novović K, Senerovic L, Polović N, Molinaro A, Kojić M, Jovčić B. 2019. Pseudomonas aeruginosa quorum sensing inhibition by clinical isolate Delftia tsuruhatensis 11304: Involvement of N-octadecanoylhomoserine lactones. Scientific Reports9, 16465.

McKee K L. 1995. Mangrove species distribution and propagule predation in Belize: An exception to the dominance-predation hypothesis. Biotropica27, 334–345.

Mukherjee P, Mitra A, Roy M. 2019. Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Frontiers in Microbiology10, 1207.

Naufal M, Wu J H, Shao Y H. 2022. Glutamate enhances osmoadaptation of anammox bacteria under high salinity: Genomic analysis and experimental evidence. Environmental Science & Technology56, 11310–11322.

Nelkner J, Henke C, Lin T W, Pätzold W, Hassa J, Jaenicke S, Grosch R, Pühler A, Sczyrba A, Schlüter A. 2019. Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes10, 424.

Niu S, Gao Y, Zi H, Liu Y, Liu X, Xiong X, Yao Q, Qin Z, Chen N, Guo L. 2022. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. The Crop Journal10, 375–386.

Patel P, Shaikh S, Sayyed R. 2018. Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environmental Sustainability1, 81–87.

Patel S, Jinal H, Amaresan N. 2017. Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annuum) seedling under salt stress. Biocatalysis Agricultural Biotechnology12, 85–89.

Pires I S, Negrão S, Oliveira M M, Purugganan M D. 2015. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum155, 43–54.

Rao K M, Sresty T. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science157, 113–128.

Rodriguez P A, Rothballer M, Chowdhury S P, Nussbaumer T, Gutjahr C, Falter-Braun P. 2019. Systems biology of plant–microbiome interactions. Molecular Plant12, 804–821.

Schmitz L, Yan Z, Schneijderberg M, de Roij M, Pijnenburg R, Zheng Q, Franken C, Dechesne A, Trindade L M, van Velzen R. 2022. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. The ISME Journal16, 1907–1920.

Sheue C R, Liu H Y, Yong J W. 2003. Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon52, 287–294.

Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K. 2003. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. International Journal of Systematic Evolutionary Microbiology53, 1479–1483.

Sun L, Lei P, Wang Q, Ma J, Zhan Y, Jiang K, Xu Z, Xu H. 2020. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Frontiers in Microbiology, 10, 3112.

Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R. 2018. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology Biochemistry130, 69–79.

Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology23, 680–694.

Wang G, Li B, Peng D, Zhao H, Lu M, Zhang L, Li J, Zhang S, Guan C, Ji J. 2022. Combined application of H2S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress. Microbiological Research256, 126943.

Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W. 2015. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology168, 1076–1090.

Wang X, Bai X. 2014. Effects of ethephon and nicotinic acid on mycelium and polysaccharide yield in Coprinus comatus of liquid culture. Hubei Agricultural Sciences53, 1349–1351. (in Chinese)

Wang X, Wang C, Li Q, Zhang J, Ji C, Sui J, Liu Z, Song X, Liu X. 2018. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. Journal of Applied Microbiology125, 1868–1880.

Xia F, Hao H, Qi Y, Bai H, Li H, Shi Z, Shi L. 2023. Effect of salt stress on microbiome structure and diversity in chamomile (Matricaria chamomilla L.) rhizosphere soil. Agronomy13, 1444.

Yang X, Dai Z, Yuan R, Guo Z, Xi H, He Z, Wei M. 2023. Effects of salinity on assembly characteristics and function of microbial communities in the phyllosphere and rhizosphere of salt-tolerant Avicennia marina mangrove species. Microbiology Spectrum11, e03000–e03022.

Yao H, Sun X, He C, Maitra P, Li X C, Guo L D. 2019. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome7, 1–15.

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science25, 1117–1130.

Zhang W, Wang C, Xue R, Wang L. 2019. Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture18,1360–1368.

Zhu X, Pan L, Xiao T, Ren X, Liu Z. 2018. Exogenous niacin treatment increases NADPH oxidase in kiwifruit. Brazilian Journal of Biology78, 686–690.

[1] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[2] Xiangxia Yang, Tingting Chen, Libo Xiang, Limin Liu, Mi Wei. Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(2): 769-785.
[3] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[4] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
[5] Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu. The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3592-3609.
[6] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[7] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[8] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[9] LI Wei-hua, CHEN Peng, WANG Yu-zhu, LIU Qi-zhi. Characterization of the microbial community response to replant diseases in peach orchards[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1082-1092.
[10] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[11] WANG Dong, XI Yue, SHI Xiao-yan, GUO Chao-li, ZHONG Yu-jie, SONG Chao, GUAN Yu, HUANG Lu, YANG Qi-feng, LI Feng-min. Effects of residual plastic film on crop yield and soil fertility in a dryland farming system[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3783-3791.
[12] LI Qiao-lu, LI Zhi-yong, WANG Meng-meng, YAN Jing-wei, FANG Lin. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3638-3651.
[13] WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2264-2274.
[14] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
[15] Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2134-2144.
No Suggested Reading articles found!