Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3638-3651    DOI: 10.1016/j.jia.2023.04.034
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica
LI Qiao-lu1, LI Zhi-yong2, WANG Meng-meng3#, YAN Jing-wei4#, FANG Lin1#

1 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R.China

2 Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, P.R.China

3 Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, P.R.China

4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

盐害严重威胁着植物的生长和发育。因此,识别和筛选盐胁迫响应的关键基因并解析其作用机制对提高植物的耐盐性至关重要。本研究运用磷酸化蛋白质组技术对盐胁迫处理前后的谷子样品进行检测分析,共鉴定出4000个磷酸化多肽,其中123个显著差异。非冗余蛋白质数据库(NR)功能注释显示,有23个转录因子表达差异显著,如SiRAV1转录因子。亚细胞定位分析显示SiRAV1位于细胞核中。表型和生理分析证实SiRAV1的过表达能够提高谷子对盐胁迫的耐受性,且这一作用是通过抑制盐诱导的H2O2积累、丙二醛含量和电解质渗漏率的增加等方式实现的。进一步的研究表明,SiRAV1能够直接结合SiCAT启动子激活SiCAT的表达,从而提高CAT酶的活性。本研究还发现,SiRAV1蛋白的Ser31位点磷酸化可以通过增强其与SiCAT启动子的结合能力来正向调节谷子的耐盐性。综上所述,本研究首次解析了SiRAV1在谷子盐响应中的作用机制:盐胁迫通过诱导SiRAV1蛋白的Ser31位点磷酸化,进而增强了其与SiCAT启动子的结合能力,激活了SiCAT的表达,从而提高谷子对盐胁迫的耐受性。



Abstract  Salinity severely affects plant growth and development. Thus, it is crucial to identify the genes functioning in salt stress response and unravel the mechanism by which plants against salt stress. This study used the phosphoproteomic assay and found that 123 of the 4 000 quantitative analyzed phosphopeptides were induced by salt stress. The functional annotation of the non-redundant protein database (NR) showed 23 differentially expressed transcription factors, including a phosphopeptide covering the Serine 31 in the RAV (related to ABI3/VP1) transcription factor (named SiRAV1). SiRAV1 was located in the nucleus. Phenotypic and physiological analysis showed that overexpressing SiRAV1 in foxtail millet enhanced salt tolerance and alleviated the salt-induced increases of H2O2 accumulation, malondialdehyde (MDA) content, and percent of electrolyte leakage. Further analysis showed that SiRAV1 positively regulated SiCAT expression to modulate the catalase (CAT) activity by directly binding to the SiCAT promoter in vivo and in vitro. Moreover, we found that phosphorylation of SiRAV1 at the Ser31 site positively regulated salt tolerance in foxtail millet via enhancing its binding ability to SiCAT promoter but did not affect its subcellular localization. Overall, our results define a mechanism for SiRAV1 function in salt response where salt-triggered phosphorylation of SiRAV1 at Ser31 enhances its binding ability to SiCAT promoter, and the increased SiCAT expression contributes to salt tolerance in foxtail millet.
Keywords:  foxtail millet        salt stress        phosphoproteomic        SiRAV1        SiCAT  
Received: 22 December 2022   Accepted: 04 April 2023
Fund: This work was funded by the National Natural Science Foundation of China (31902062) and the South China Botanical Garden, Chinese Academy of Sciences (QNXM-02).
About author:  LI Qiao-lu, E-mail: l2295397739@163.com; #Correspondence WANG Meng-meng, E-mail: wangmeng2336@163.com; YAN Jing-wei, E-mail: jingweiyan@zafu.edu.cn; FANG Lin, E-mail: linfang@scbg.ac.cn

Cite this article: 

LI Qiao-lu, LI Zhi-yong, WANG Meng-meng, YAN Jing-wei, FANG Lin. 2023. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica. Journal of Integrative Agriculture, 22(12): 3638-3651.

Adekunle A, Fatunbi A. 2012. Approaches for setting-up multi-stakeholder platforms for agricultural research and development. World Applied Sciences Journal16, 981–988.

Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T. 2018. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patensThe Plant Journal94, 699–708.

Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba A I, Ayaydin F, Dasari R. 2019. The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. Journal of Experimental Botany70, 4903–4918.

Chang I F, Hsu J L, Hsu P H, Sheng W A, Lai S J, Lee C, Chen C W, Hsu J C, Wang S Y, Wang L Y, Chen C C. 2012. Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. Plant Science185–186, 131–142.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Damaris R N, Yang P. 2021. Protein phosphorylation response to abiotic stress in plants. Plant Phosphoproteomics (Methods and Protocols), 2358, 17–43.

Doust A N, Kellogg E A, Devos K M, Bennetzen J L. 2009. Foxtail millet: A sequence-driven grass model system. Plant Physiology149, 137–141.

Duan Y B, Li J, Qin R Y, Xu R F, Li H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. 2016. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Molecular Biology90, 49–62.

Feng C Z, Chen Y, Wang C, Kong Y H, Wu W H, Chen Y F. 2014. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal80, 654–668.

Fu M, Kang H K, Son S H, Kim S K, Nam K H. 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant Cell Physiology55, 1892–904.

Gao Y, Han D, Jia W, Ma X, Yang Y, Xu Z. 2020. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress. Plant Physiology and Biochemistry156, 420–435.

Grebenok R J, Pierson E, Lambert G M, Gong F C, Afonso C L, Haldeman-Cahill R, Carrington J C, Galbraith D W. 1997. Green-fluorescent protein fusions for efficient characterization of nuclear targeting. The Plant Journal11, 573–586.

Hu L, Huang Y, Ding B, Cai R, Bai L. 2021. Selective action mechanism of fenclorim on rice and Echinochloa crusgalli is associated with the inducibility of detoxifying enzyme activities and antioxidative defense. Journal of Agricultural and Food Chemistry69, 5830–5839.

Hu Y, Guo S, Li X, Ren X. 2013. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti4+-IMAC enrichment and ESI-Q-TOF MS. Electrophoresis34, 485–492.

Jiang H, Tang B, Xie Z, Nolan T, Ye H, Song G Y, Walley J, Yin Y. 2019. GSK 3-like kinase BIN 2 phosphorylates RD 26 to potentiate drought signaling in Arabidopsis. The Plant Journal100, 923–937.

Jie G, Zhou X, Dai K, Yuan X, Guo P, Shi W, Zhou M. 2022. Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL. Journal of Integrative Agriculture21, 2876–2887.

Kwon S J, Choi E Y, Choi Y J, Ahn J H, Park O K. 2006. Proteomics studies of post-translational modifications in plants. Journal of Experimental Botany57, 1547–1551.

Lata C, Mishra A K, Muthamilarasan M, Bonthala V S, Khan Y, Prasad M. 2014. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS ONE9, e113092.

Li A, Chen J, Lin Q, Zhao Y, Duan Y, Wai S C, Song C, Bi J. 2021. Transcription factor MdWRKY32 participates in starch–sugar metabolism by binding to the MdBam5 promoter in apples during postharvest storage. Journal of Agricultural and Food Chemistry69, 14906–14914.

Li J, Dong Y, Li C, Pan Y, Yu J. 2017. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Frontiers in Plant Science7, 2053.

Li Z J, Jia G Q, Li X Y, Li Y C, Zhi H, Tang S, Ma J F, Zhang S, Li Y D, Shang Z L, Diao X M. 2021. Identification of blast-resistance loci through genome-wide association analysis in foxtail millet (Setaria italica (L.) Beauv.). Journal of Integrative Agriculture20, 2056–2064.

Liu J, Deng Z, Liang C, Sun H, Li D, Song J, Zhang S, Wang R. 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear. International Journal of Molecular Sciences22, 5567.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y. 2019. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Developmental Cell48, 697–709.

Min H, Zheng J, Wang J. 2014. Maize ZmRAV1 contributes to salt and osmotic stress tolerance in transgenic Arabidopsis. Journal of Plant Biology57, 28–42.

Pang Y H, Zhou X, Chen Y L, Bao J S. 2018. Comparative phosphoproteomic analysis of the developing seeds in two indica rice (Oryza sativa L.) cultivars with different starch quality. Journal of Agricultural & Food Chemistry66, 3030–3037.

Pi E, Zhu C, Fan W, Huang Y, Qu L, Li Y, Zhao Q, Ding F, Qiu L, Wang H. 2018. Quantitative phosphoproteomic and metabolomic analyses reveal GmMYB173 optimizes flavonoid metabolism in soybean under salt stress. Molecular & Cellular Proteomics17, 1209–1224.

Puranik S, Jha S, Srivastava P S, Sreenivasulu N, Prasad M. 2011. Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. Journal of Plant Physiology168, 280–287.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Sharma N, Niranjan K. 2018. Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International34, 329–363.

Shin H Y, Nam K H. 2018. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 in Arabidopsis. Molecules and Cells41, 1072–1080.

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science365, 658–664.

Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy P C O, Surabhi G K, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C. 2008. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Science175, 631–641.

Vu L D, Gevaert K, De Smet I. 2018. Protein language: Post-translational modifications talking to each other. Trends in Plant Science23, 1068–1080.

Wang F B, Wan C Z, Niu H F, Qi M Y, Gang L, Zhang F, Hu L B, Ye Y X, Wang Z X, Pei B L, Chen X H, Yuan C Y. 2023. OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture22, 341–359.

Wang M, Guo W, Li J, Pan X, Pan L, Zhao J, Zhang Y, Cai S, Huang X, Wang A, Liu Q. 2021. The miR528-AO module confers enhanced salt tolerance in rice by modulating the ascorbic acid and abscisic acid metabolism and ROS scavenging. Journal of Agricultural and Food Chemistry69, 8634–8648.

Wang S, Guo T, Shen Y, Wang Z, Kang J, Zhang J, Yi F, Yang Q, Long R. 2021. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatulaPlant Physiology and Biochemistry163, 154–165.

Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H. 2018. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. Journal of Pineal Research64, e12454.

Woo H R, Kim J H, Kim J, Kim J, Lee U, Song I J, Kim J H, Lee H Y, Nam H G, Lim P O. 2010. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany61, 3947–3957.

Wu C, Xiao S, Wan Y, Zhang L, Tang S, Sui Y, Bai Y, Wang Y, Liu M, Fan J, Zhang J, Yang G, Yan K, Diao X, Zheng C, Zheng C. 2022. SiPLATZ12 transcript factor regulates multiple yield traits and salt tolerance in foxtail millet (Setaria italica). bioRxiv, doi: 10.1101/2022.07.01.498439.

Xi L, Schulze W X, Wu X N. 2021. Phosphoproteomic analysis of plant membranes. Arabidopsis Protocols2200, 441–451.

Xiao S, Wan Y, Guo S, Fan J, Lin Q, Zheng C, Wu C. 2023. Transcription factor SiDi19-3 enhances salt tolerance of foxtail millet and Arabidopsis. International Journal of Molecular Sciences24, 2592.

Yan J, Kong N, Liu Q, Wang M, Lv K, Zeng H, Chen W, Luo J, Lou H, Song L, Wu J. 2023. Ti3C2Tx MXene nanosheets enhance the tolerance of Torreya grandis to Pb stress. Journal of Hazardous Materials445, 130647.

Yan J, Li J, Zhang H, Liu Y, Zhang A. 2022. ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize. The Crop Journal10, 555–564.

Yang L, Liu Y, Xiang Y, Sun X, Yan J, Zhang A. 2021. Establishment and optimization of genetic transformation system of stem tip in vitro of foxtail millet. Chinese Bulletin of Botany56, 71–79. (in Chinese)

Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. 2014. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Journal of Proteomics109, 290–308.

Zhang X M, Ma H, Ye J Y, Long H F, You Z B. 2015. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. The Plant Journal84, 527–544.

Zhang Z, Shi Y, Ma Y, Yang X, Yin X, Zhang Y, Xiao Y, Liu W, Li Y, Li S. 2020. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal18, 2267–2279.

Zhao S P, Xu Z S, Zheng W J, Zhao W, Wang Y X, Yu T F, Chen M, Zhou Y B, Min D H, Ma Y Z, Chai S C, Zhang X H. 2017. Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Frontiers in Plant Science8, 905.

Zhou Y B, Liu C, Tang D Y, Yan L, Wang D, Yang Y Z, Gui J S, Zhao X Y, Li L G, Tang X D. 2018. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell30, 1100–1118.

Zou X, Liu M Y, Wu W H, Wang Y. 2020. Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation. Journal of Integrative Plant Biology62, 865–876.

[1] XU Bing-qin, GAO Xiao-li, GAO Jin-feng, LI Jing, YANG Pu, FENG Bai-li. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2457-2471.
[2] HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2612-2623.
No Suggested Reading articles found!