Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 769-785    DOI: 10.1016/j.jia.2024.08.022
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat

Xiangxia Yang1*, Tingting Chen2*, Libo Xiang2, Limin Liu3, Mi Wei1, 4#

1 School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China

2 Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management for Crops in the Central Region, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Crop Pest and Weed Control, Wuhan 430079, China

3 Agricultural Technology Service Center of Yuxin Town, Tianmen 433000, China

4 Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China

 Highlights 
The new fungicide Y17991 significantly controls sharp eyespot.
Y17991 affects rhizosphere microbial community via rhizosphere metabolites.
Y17991 increases bacteria involved in disease resistance and growth promotion.
Y17991 does not significantly disrupt nontarget microbial communities.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦纹枯病(Rhizoctonia cerealis)是一种广泛传播的土传真菌病害,严重威胁小麦健康,是我国小麦实现高产、稳产、优质的主要障碍之一。我们的合作团队开发了一种新型、高效且低毒的杀菌剂Y17991(N-(2-(2,4-bis- (trifluoromethyl) phenoxy) phenyl)-3-(difluoromethyl)-1- methyl-1H-pyrazole-4-carboxamide)前期室内试验证实了该药剂对小麦纹枯病有显著的抑制作用。本研究通过大田试验进一步证明了Y17991的有效性,防病指数达83.52%,比广泛使用的噻呋酰胺高1.97%,并显著增加了小麦产量。此外,本研究还探讨了Y17991对小麦根际土壤微生物群落结构和功能的影响。结果表明Y17991对细菌群落的影响比真菌群落更大,显著调节了患病小麦根际的关键氨基酸代谢途径和某些生物合成过程。它还增强了健康小麦根际的某些生物合成途径和代谢活动。此外,Y17991 施用通过调节根际代谢物,从而对微生物群落产生了显著的调控作用。我们确定了 15 种可能参与防治 R. cerealis 的微生物菌株,Y17991 的施加促进了 Pedobacter  Bacillus 菌株的生长。这些菌株不仅有助于植物生长,还具有预防病害的潜力。总之,施用合理剂量的 Y17991不会显著影响靶向根际微生物群落未来我们将继续研究 Y17991 对土壤生态系统中原生动物和线虫等类群的影响。研究为新型杀菌剂的科学应用与推广提供了理论依据,为建立农药影响环境生态系统的综合评价体系提供了重要的参考。



Abstract  
Sharp eyespot (Rhizoctonia cerealis) is a widespread soil-borne fungal disease that poses a severe threat to wheat health, and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.  Our collaborative team has developed a novel, efficient, and low-toxicity fungicide named Y17991 (N-(2-(2,4-bis-(trifluoromethyl)phenoxy)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide).  Preliminary laboratory tests confirmed the significant inhibitory effect of this agent on Rcerealis.  Large-area field trials also demonstrated its efficacy, with a disease prevention index of 83.52%, which is 1.97% greater than that of the widely used thifluzamide, and it significantly increased the wheat yield.  Moreover, this study explored the impacts of Y17991 on the structure and function of the microbial community in wheat rhizosphere soil.  Bacterial communities were more strongly affected than fungal communities.  Y17991 significantly modulated key amino acid metabolic pathways and certain biosynthetic processes in diseased wheat rhizospheres, and it also enhanced certain biosynthetic pathways and metabolic activities in healthy wheat rhizospheres.  Additionally, the application of Y17991 regulated rhizosphere metabolites, thus exerting significant control over the microbial community.  We identified 15 microbial strains potentially involved in the prevention and treatment of Rcerealis, and Y17991 treatment promoted the growth of Pedobacter and Bacillus strains.  These strains not only aid in plant growth but they also have the potential for disease prevention.  In summary, Y17991 application at a reasonable dose does not cause significant disruption to nontarget rhizosphere microbial communities.  In future studies, we will continue to investigate the impacts of Y17991 on nonmicrobial components in soil ecosystems, such as protozoa and nematodes.  Our research provides a theoretical basis for the scientific application and promotion of new fungicides and offers a significant reference for establishing a comprehensive system for assessing the ecological impact of pesticides on the environment.


Keywords:  pesticide       sharp eyespot        rhizosphere microbial community        rhizosphere metabolites        culturable microorganisms  
Received: 25 February 2024   Accepted: 08 July 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32270296), the Shenzhen Postdoctoral Scientific Research, China (77000-42100004), the Key Basic Research and Development Program of Hubei Province, China (2020BBA052), the Natural Science Foundation of Guangdong Province, China (2024A1515010498) and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University, China.
About author:  Xiangxia Yang, E-mail: yangxx55@mail3.sysu.edu.cn; Tingting Chen, E-mail: 1257353854@qq.com; #Correspondence Mi Wei, Mobile: +86-18672580010, E-mail: weim29@mail.sysu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xiangxia Yang, Tingting Chen, Libo Xiang, Limin Liu, Mi Wei. 2025. Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat. Journal of Integrative Agriculture, 24(2): 769-785.

Akhter M S, Hossain S J, Hossain S A, Datta R K. 2012. Isolation and characterization of salinity tolerant Azotobacter sp. Greener Journal of Biological Sciences2, 043–051.

Aliyat F Z, Maldani M, El Guilli M, Nassiri L, Ibijbijen J. 2022. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms10, 980.

Anthony M A, Frey S D, Stinson K A. 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere8, e01951.

Araujo A S, Pertile M, Costa R M, Costa M K, de Aviz R O, Mendes L W, de Medeiros E V, da Costa D P, Melo V M, de Araujo Pereira A P. 2023. Short-term responses of plant growth-promoting bacterial community to the herbicides imazethapyr and flumioxazin. Chemosphere328, 138581.

Bashan Y, Kamnev A A, de-Bashan L E. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils49, 465–479.

Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J. Vangronsveld, J. 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome5, 25.

Berendsen R L, Vismans G, Yu K, Song Y, de Jonge R, Burgman W P, Burmølle M, Herschend J, Bakker P A, Pieterse C M. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal12, 1496–1507.

Bjerketorp J, Levenfors J J, Nord C, Guss B, Öberg B, Broberg A. 2021. Selective isolation of multidrug-resistant Pedobacter spp., producers of novel antibacterial peptides. Frontiers in Microbiology12, 642829.

Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome6, 90.

Braga R M, Padilla G, Araújo W L. 2018. The biotechnological potential of Epicoccum spp.: Diversity of secondary metabolites. Critical Reviews in Microbiology44, 759–778.

Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J, Holmes S P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

Chen Y, Zhang A F, Wang W X, Zhang Y, Gao T C. 2012. Baseline sensitivity and efficacy of thifluzamide in Rhizoctonia solaniAnnals of Applied Biology161, 247–254.

Du P Q, Wu X H, Xu J, Dong F S, Liu X G, Zheng Y Q. 2018. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. Journal of Hazardous Materials353, 204–213.

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

El-Nahhal I, El-Nahhal Y. 2021. Pesticide residues in drinking water, their potential risk to human health and removal options. Journal of Environmental Management299, 113611.

Elshaghabee F M, Rokana N, Gulhane R D, Sharma C, Panwar H. 2017. Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology8, 1490.

Fernández-González A J, Cardoni M, Gómez-Lama Cabanás C, Valverde-Corredor A, Villadas P J, Fernández-López M, Mercado-Blanco J. 2020. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. Microbiome8, 11.

Finkel O M, Salas-González I, Castrillo G, Conway J M, Law T F, Teixeira P J, Wilson E D, Fitzpatrick C R, Jones C D, Dangl J L. 2020. A single bacterial genus maintains root growth in a complex microbiome. Nature587, 103–108.

Folman L B, Postma J, van Veen J A. 2003. Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiological Research158, 107–115.

Galicia-Campos E, García-Villaraco A, Montero-Palmero M B, Gutiérrez-Mañero F J, Ramos-Solano B. 2022. Bacillus H47 triggers Olea europaea metabolism activating DOXP and shikimate pathways simultaneously and modifying leaf extracts’ antihypertensive activity. Frontiers in Microbiology13, 1005865.

Geiger F, Bengtsson J, Berendse F, Weisser W W, Emmerson M, Morales M B, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology11, 97–105.

Gu S H, Wei Z, Shao Z Y, Friman V P, Cao K H, Yang T J, Kramer J, Wang X F, Li M, Mei X L, Xu Y C, Shen Q R, Kümmerli R, Jousset A. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology5, 1002–1010.

Gu Y A, Banerjee S, Dini-Andreote F, Xu Y C, Shen Q R, Jousset A, Wei Z. 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. The ISME Journal16, 2448–2456.

Guo A Y, Pan C G, Ma J Y, Bao Y Y. 2020. Linkage of antibiotic resistance genes, associated bacteria communities and metabolites in the wheat rhizosphere from chlorpyrifos-contaminated soil. Science of the Total Environment741, 140457.

Guo Y P, Li W, Sun H Y, Wang N, Yu H S, Chen H G. 2012. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. Journal of General Plant Pathology78, 247–254.

Haney C H, Samuel B S, Bush J, Ausubel F M. 2015. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants1, 1–9.

He E K, Qiu R L, Cao X D, Song L, Peijnenburg W J, Qiu H. 2020. Elucidating toxicodynamic differences at the molecular scale between ZnO nanoparticles and ZnClin Enchytraeus crypticus via nontargeted metabolomics. Environmental Science & Technology54, 3487–3498.

Huang A C, Jiang T, Liu Y X, Bai Y C, Reed J, Qu B, Goossens A, Nützmann H W, Bai Y, Osbourn A. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science364, eaau6389.

Imfeld G, Vuilleumier S. 2012. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology49, 22–30.

Jacobson A R, Dousset S, Guichard N, Baveye P, Andreux F. 2005. Diuron mobility through vineyard soils contaminated with copper. Environmental Pollution138, 250–259.

Jinal N H, Amaresan N. 2020. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Archives of Microbiology202, 1785–1794.

Kõljalg U, Larsson K H, Abarenkov K, Nilsson R H, Alexander I J, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T. 2005. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist166, 1063–1068.

Kremer R, Means N, Kim S. 2005. Glyphosate affects soybean root exudation and rhizosphere micro-organisms. International Journal of Environmental Analytical Chemistry85, 1165–1174.

Kushwaha P, Kashyap P L, Srivastava A K, Tiwari R K. 2020. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Brazilian Journal of Microbiology51, 229–241.

Li H, Wang Y X, Zhu X L, Yang G F. 2021. Discovery of a fungicide candidate targeting succinate dehydrogenase via computational substitution optimization. Journal of Agricultural and Food Chemistry69, 13227–13234.

Li S Z, Deng Y, Lian S Y, Dai C X, Ma Q, Qu Y Y. 2022. Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. Environmental Research204, 112143.

Liu C Y, Guo W, Wang Y, Fu B S, Doležel J, Liu Y, Zhai W L, Said M, Molnár I, Holušová K, Zhang R Q, Wu J Z. 2023. Introgression of sharp eyespot resistance from Dasypyrum villosum chromosome 2VL into bread wheat. The Crop Journal11, 1512–1520.

Liu Y P, Zhang H H, Wang J, Gao W T, Sun X T, Xiong Q, Shu X, Miao Y Z, Shen Q R, Xun W B, Zhang R F. 2024. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome. Nature Communications15, 1907.

Louden B C, Haarmann D, Lynne A M. 2011. Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education12, 51–53.

Lupwayi N Z, Blackshaw R E, Geddes C M, Dunn R, Petri R M. 2022. Multi-year and multi-site effects of recurrent glyphosate applications on the wheat rhizosphere microbiome. Environmental Research215, 114363.

Matsumoto H, Fan X Y, Wang Y, Kusstatscher P, Duan J, Wu S L, Chen S L, Qiao K, Wang Y, Ma B, Zhu G N, Hashidoko Y, Berg G, Cernava T, Wang M C. 2021. Bacterial seed endophyte shapes disease resistance in rice. Nature Plants7, 60–72.

Miller S A, Ferreira J P, LeJeune J T. 2022. Antimicrobial use and resistance in plant agriculture: A one health perspective. Agriculture-Basel12, 289.

Nagaoka T, Goto K, Watanabe A, Sakata Y, Yoshihara T. 2001. Sesquiterpenoids in root exudates of Solanum aethiopicumZeitschrift für Naturforschung (Section C: A Journal of Biosciences), 56, 707–713.

Nguyen N H, Song Z, Bates S T, Branco S, Tedersoo L, Menke J, Schilling J S, Kennedy P G. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.

Raaijmakers J M, Mazzola M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology50, 403–424.

Satola B, Wübbeler J H, Steinbüchel A. 2013. Metabolic characteristics of the species Variovorax paradoxusApplied Microbiology and Biotechnology97, 541–560.

Shi W C, Li M C, Wei G S, Tian R M, Li C P, Wang B, Lin R S, Shi C Y, Chi X L, Zhou B, Gao Z. 2019. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome7, 14.

Singh R P, Singh P K, Rutkoski J, Hodson D P, He X, Jørgensen L N, Hovmøller M S, Huerta-Espino J. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology54, 303–322.

Sivakumar G, Briccoli Bati C, Uccella N. 2007. Demethyloleuropein and β-glucosidase activity in olive fruits. Biotechnology Journal2, 381–385.

Soltani A A, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji P A, Mirhoseyni H. 2010. Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. Journal of Agricultural Science2, 106.

Toole D R, Zhao J, Martens-Habbena W, Strauss S L. 2021. Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in southwest Florida soils. Applied Soil Ecology168, 104129.

Wang Y H, Men J N, Zheng T, Ma Y L, Li W S, Cernava T, Bai L Y, Jin D. 2023. Impact of pyroxasulfone on sugarcane rhizosphere microbiome and functioning during field degradation. Journal of Hazardous Materials455, 131608.

Wang Z H, Song Y. 2022. Toward understanding the genetic bases underlying plant-mediated “cry for help” to the microbiota. iMeta1, e8.

Xie J B, Wicaksono W A, Lv Z Y, Berg G, Cernava T, Ge B B. 2023. Rhizosphere bacteria show a stronger response to antibiotic-based biopesticide than to conventional pesticides. Journal of Hazardous Materials458, 132035.

Xiong W, Li R, Ren Y, Liu C, Zhao Q Y, Wu H S, Jousset A, Shen Q R. 2017. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biology and Biochemistry107, 198–207.

Yang X X, Dai Z A, Yuan R W, Guo Z H, Xi H X, He Z L, Wei M. 2023. Effects of salinity on assembly characteristics and function of microbial communities in the phyllosphere and rhizosphere of salt-tolerant Avicennia marina mangrove species. Microbiology Spectrum11, e03000–e03022.

Yao X F, Liu Y, Liu X, Qiao Z H, Sun S, Li X D, Wang J, Zhang F W, Jiang X Y. 2022. Effects of thifluzamide on soil fungal microbial ecology. Journal of Hazardous Materials431, 128626.

Yin C T, Casa Vargas J M, Schlatter D C, Hagerty C H, Hulbert S H, Paulitz T C. 2021. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome9, 86.

Zhang Y, Lu J L, Wang J X, Zhou M G, Chen C J. 2015. Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. Pesticide Biochemistry and Physiology124, 97–102.

[1] PAN Fan, GAO Li-jie, ZHU Kai-hui, DU Gui-lin, ZHU Meng-meng, ZHAO Li, GAO Yu-lin, TU Xiong-bing, ZHANG Ze-hua. Regional selection of insecticides and fungal biopesticides to control aphids and thrips and improve the forage quality of alfalfa crops[J]. >Journal of Integrative Agriculture, 2023, 22(1): 185-194.
[2] YUE Meng, LI Wen-jing, JIN Shan, CHEN Jing, CHANG Qian, Glyn JONES, CAO Yi-ying, YANG Gui-jun, LI Zhen-hong, Lynn J. FREWER. Farmers’ precision pesticide technology adoption and its influencing factors: Evidence from apple production areas in China[J]. >Journal of Integrative Agriculture, 2023, 22(1): 292-305.
[3] Tewodros MULUGETA, Jean-Baptiste MUHINYUZA, Reinette GOUWS-MEYER, Lerato MATSAUNYANE, Erik ANDREASSON, Erik ALEXANDERSSON .
Botanicals and plant strengtheners for potato and tomato cultivation in Africa
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 406-427.
[4] QIN Shi-le, Lü Xin-ye.
Do large-scale farmers use more pesticides?  Empirical evidence from rice farmers in five Chinese provinces 
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 590-599.
[5] PAN Xing-lu, DONG Feng-shou, WU Xiao-hu, XU Jun, LIU Xin-gang, ZHENG Yong-quan . Progress of the discovery, application, and control technologies of chemical pesticides in China[J]. >Journal of Integrative Agriculture, 2019, 18(4): 840-853.
[6] MENG Di, ZHAI Li-xin, TIAN Qiao-peng, GUAN Zheng-bing, CAI Yu-jie, LIAO Xiang-ru. Complete genome sequence of Bacillus amyloliquefaciens YP6, a plant growth rhizobacterium efficiently degrading a wide range of organophosphorus pesticides[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2668-2672.
[7] DAI Wei, LI Yao, ZHU Jun, GE Lin-quan, YANG Guo-qing, LIU Fang. Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae)[J]. >Journal of Integrative Agriculture, 2019, 18(1): 124-133.
[8] QIAO Fang-bin, HUANG Ji-kun, WANG Shu-kun, LI Qiang. The impact of Bt cotton adoption on the stability of pesticide use[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2346-2356.
[9] YANG Gui-ling, WANG Wen, LIANG Sen-miao, YU Yi-jun, ZHAO Hui-yu, WANG Qiang, QIAN Yongzhong. Pesticide residues in bayberry (Myrica rubra) and probabilistic risk assessment for consumers in Zhejiang, China[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2101-2109.
[10] ZHANG Chao, Guanming Shi , SHEN Jian, HU Rui-fa. Productivity effect and overuse of pesticide in crop production in China[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1903-1910.
[11] Jiachi Chiou, Arthur Ho Hon Leung, Hang Wai Lee, Wing-tak Wong. Rapid testing methods for food contaminants and toxicants[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2243-2264.
[12] CHEN Zeng-long, DONG Feng-shou, XU Jun, LIU Xin-gang, ZHENG Yong-quan. Management of pesticide residues in China[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2319-2327.
[13] LI Zhi-xia, NIE Ji-yun, YAN Zhen, XU Guo-feng, LI Hai-fei, KUANG Li-xue, PAN Li-gang, XIE Han-zhong, WANG Cheng, LIU Chuan-de, ZHAO Xu-bo, GUO Yong-ze. Risk assessment and ranking of pesticide residues in Chinese pears[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2328-2339.
[14] Minghua Zhang, Michael R Zeiss, Shu Geng. Agricultural pesticide use and food safety: California’s model[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2340-2357.
[15] Carl K Winter, Elizabeth A Jara. Pesticide food safety standards as companions to tolerances and maximum residue limits[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2358-2364.
No Suggested Reading articles found!