Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2264-2274    DOI: 10.1016/S2095-3119(21)63843-1
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple

WANG Chu-kun1, ZHAO Yu-wen1, HAN Peng-liang2, YU Jian-qiang1, HAO Yu-jin1†, XU Qian3, YOU Chun-xiang1, HU Da-gang1

1 National Key Laboratory of Crop Biology/Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, P.R.China

2 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, P.R.China

3 State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

本研究从“Royal Gala” (Malus×domestica Borkh.) 皇家嘎啦苹果品种中克隆了一个生长素应答因子基因MdARF2 (HF41569)。系统发育分析表明,ARF2蛋白在不同物种间高度保守,MdARF2与PpARF2的亲缘关系最接近,但两者在DNA水平上存在差异。MdARF2蛋白包含三个典型的保守结构域:B3-DNA结合结合域、Auxin_resp结构域和AUX_IAA结构域。亚细胞定位分析表明,MdARF2定位于细胞核。蛋白质的三维结构预测表明,MdARF2与AtARF2高度相似,包含螺旋、折叠和无规则卷曲。MdARF2启动子含有顺式作用元件,用于响应各种胁迫、环境和激素信号。表达分析表明,MdARF2广泛表达于苹果各组织中,在根部表达量最高。通过对MdARF2转基因苹果愈伤组织的功能分析表明,MdARF2可以降低苹果对ABA信号的敏感性,增强其耐盐性。综上所述,本研究为研究arf对非生物胁迫的调控提供了新的依据


Auxin response factors (ARFs) play key roles throughout the whole process of plant growth and development, and mediate auxin response gene transcription by directly binding with auxin response elements (AuxREs).  However, their functions in abiotic stresses are largely limited, especially in apples.  Here, the auxin response factor gene MdARF2 (HF41569) was cloned from apple cultivar ‘Royal Gala’ (Malus×domestica Borkh.).  Phylogenetic analysis showed that ARF2 proteins are highly conserved among different species and MdARF2 is the closest relative to PpARF2 of Prunus persica, but they differ at the DNA level.  MdARF2 contains three typical conserved domains including the B3 DNA-binding domain, Auxin_resp domain and AUX_IAA domain.  The subcellular localization demonstrated that MdARF2 is localized in the nucleus.  The three-dimensional structure prediction of the proteins showed that MdARF2 is highly similar with AtARF2, and they contain helices, folds, and random coils.  The promoter of MdARF2 contains cis-acting elements which respond to various stresses, as well as environmental and hormonal signals.  Expression analysis showed that MdARF2 is widely expressed in all tissues of apple, with the highest expression of MdARF2 in root.  Functional analysis with a series of MdARF2 transgenic apple calli indicated that MdARF2 can reduce the sensitivity to ABA signaling and enhance salt tolerance in apple.  In summary, the results of this research provide a new basis for studying the regulation of abiotic stresses by ARFs.

Keywords:  ABA signaling        apple        MdARF2        salt stress  
Received: 01 June 2021   Accepted: 24 September 2021
Fund: This work was supported by the National Key Research and Development Program of China (2018YFD1000200), the National Natural Science Foundation of China (31972375 and 31801330), and the Outstanding Youth Fund of Shandong Province, China (ZR2020YQ25 and SDAIT-06-03).
About author:  WANG Chu-kun, E-mail:; Correspondence HU Da-gang, E-mail:; YOU Chun-xiang, Tel: +86-538-8246151, Fax: +86-538-8242364, E-mail:; † Deceased.

Cite this article: 

WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. 2022. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple. Journal of Integrative Agriculture, 21(8): 2264-2274.

Abogadallah G M. 2010. Antioxidative defense under salt stress. Plant Signaling & Behavior, 5, 369–374.
Chandler J W. 2016. Auxin response factors. Plant, Cell & Environment, 39,1014–1028.
Chapman E J, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics, 43, 265–285.
Clipson N J, Tomos A D, Flowers T J, Jones R G. 1985. Salt tolerance in the halophyte Suaeda maritima L. Dum.: The maintenance of turgor pressure and water-potential gradients in plants growing at different salinities. Planta, 165, 392–396.
Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 132, 4563–4574.
Finkelstein R R, Gampala S S, Rock C D. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell, 14(Suppl.), S15–S45.
Fritsche-Neto R, Borém A Z. 2012. Plant Breeding for Abiotic Stress Tolerance. Springer, Heidelberg, New York.
Guclu K, Kibrislioglu G, Ozyurek M, Apak R. 2014. Development of a fluorescent probe for measurement of peroxyl radical scavenging activity in biological samples. Journal of Agricultural and Food Chemistry, 62, 1839–1845.
Guilfoyle T J, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology, 10, 453–460.
Hardtke C S, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO Journal, 17, 1405–1411.
Hu D G, Sun C H, Ma Q J, You C X, Cheng L, Hao Y J. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 170, 1315–1330.
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal, 27, 325–333.
Jung J H, Park C M. 2011. Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signaling & Behavior, 6, 1198–1200.
Liu J, Shen F, Xiao Y, Fang H, Qiu C, Li W, Wu T, Xu X, Wang Y, Zhang X, Han Z. 2020. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics, 21, 550.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Meng L S, Wang Z B, Yao S Q, Liu A. 2015. The ARF2–ANT–COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. Journal of Cell Science, 128, 3922–3932.
Muniz Garcia M N, Giammaria V, Grandellis C, Tellez-Inon M T, Ulloa R M, Capiati D A. 2012. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta, 235, 761–778.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5, 170.
Nemhauser J L, Feldman L J, Zambryski P C. 2000. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127, 3877–3888.
Niederhuth C E, Bewick A J, Ji L X, Alabady M S, Kim K D, Li Q, Rohr N A, Rambani A, Burke J M, Udall J A, Egesi C, Schmutz J, Grimwood J, Jackson S A, Springer N M, Schmitz R J. 2016. Widespread natural variation of DNA methylation within angiosperms. Genome Biology, 17, 194.
Okushima Y, Overvoorde P J, Arima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A. 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 17, 444–463.
Rademacher E H, Moller B, Lokerse A S, Llavata-Peris C I, van den Berg W, Weijers D. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. The Plant Journal, 68, 597–606.
Ren Z, Liu R, Gu W, Dong X. 2017. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence. Plant Science, 256, 103–111.
Rubio S, Noriega X, Perez F J. 2019. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Annals of Botany, 123, 681–689.
Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. 2006. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 133, 251–261.
Seo M, Peeters A J, Koiwai H, Oritani T, Marion-Poll A, Zeevaart J A, Koornneef M, Kamiya Y, Koshiba T. 2000. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the United States of America, 97,12908–12913.
Srivastava A, Singh A, Singh S S, Mishra A K. 2017. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains. Journal of Environmental Science and Health (Part A), 52, 420–428.
Sun M H, Ma Q J, Hu D G, Zhu X P, You C X, Shu H R, Hao Y J. 2018. The glucose sensor MdHXK1 PHOSPHORYLATES A TONOPLAST Na+/H+ exchanger to improve salt tolerance. Plant Physiology, 176, 2977–2990.
Vanneste S, Friml J. 2009. Auxin: A trigger for change in plant development. Cell, 136, 1005–1016.
Vert G, Walcher C L, Chory J, Nemhauser J L. 2008. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences of the United States of America, 105, 9829–9834.
Wang C K, Han P L, Zhao Y W, Yu J Q, You C X, Hu D G, Hao Y J. 2020. Genome-wide analysis of auxin response factor (ARF) genes and functional identification of MdARF2 reveals the involvement in the regulation of anthocyanin accumulation in apple. New Zealand Journal of Crop and Horticultural Science, 49, 78–91.
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z. 2011. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genetics, 7, e1002172.
Wen F L, Yue Y, He T F, Gao X M, Zhou Z S, Long X H. 2020. Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene, 738, 144460.
Wu B, Li Y H, Wu J Y, Chen Q Z, Huang X, Chen Y F, Huang X L. 2011. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. Molecular Biology Reports, 38, 3189–3194.
Xiong L, Zhu J K. 2003. Regulation of abscisic acid biosynthesis. Plant Physiology, 133, 29–36.
Zhang H, Liu D, Yang B, Liu W Z, Mu B, Song H, Chen B, Li Y, Ren D, Deng H, Jiang Y Q. 2020. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. Journal of Experimental Botany, 71, 188–203.
Zhao S, Zhang M L, Ma T L, Wang Y. 2016. Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. The Plant Cell, 28, 3005–3019.
Zhao Y, Xing L, Wang X, Hou Y J, Gao J, Wang P, Duan C G, Zhu X, Zhu J K. 2014. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling, 7, ra53.
Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K. 2018. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 19, 252.
Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.
[1] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[2] LIU Min-min, LI Ya-lun, LI Guang-cun, DONG Tian-tian, LIU Shi-yang, LIU Pei, WANG Qing-guo. Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2239-2246.
[3] ZHONG Yun-peng, QI Xiu-juan, CHEN Jin-yong, LI Zhi, BAI Dan-feng, WEI Cui-guo, FANG Jin-bao . Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation[J]. >Journal of Integrative Agriculture, 2019, 18(1): 83-95.
[4] HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2612-2623.
[5] XUE Chen-chen, XU Jin-yan, WANG Can, GUO Na, HOU Jin-feng, XUE Dong, ZHAO Jin-ming, XING Han. Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants[J]. >Journal of Integrative Agriculture, 2018, 17(03): 539-553.
[6] Sajid Hussain, ZHANG Jun-hua, ZHONG Chu, ZHU Lian-feng, CAO Xiao-chuang, YU Sheng-miao, Allen Bohr James, HU Ji-jie, JIN Qian-yu. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2357-2374.
[7] PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang. Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2168-2176.
No Suggested Reading articles found!