Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1857-1869    DOI: 10.1016/j.jia.2022.11.006
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes
ZHAO Ruo-nan1, 2, 3*, CHEN Si-yuan1, 2, 3*, TONG Cui-hong1, 2, 3, HAO Jie1, 2, 3, LI Pei-si1, 2, 3, XIE Long-fei1, 2, 3, XIAO Dan-yu1, 2, 3, ZENG Zhen-ling1, 2, 3#, XIONG Wen-guang1, 2, 3#

1 Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P.R.China

2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P.R.China

3 National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

抗生素耐药性已成为威胁人类健康的全球性问题。抗生素被广泛应用于肉鸡养殖从而影响它们的肠道微生物组和耐药组。为了更好地了解对农场动物持续性给药是如何改变微生物生态的变化,我们采用宏基因组的方法,研究脉冲式抗生素给药对肉鸡粪便微生物群、耐药基因(ARGs)及其宿主的影响。肉鸡分别接受三次连续五天的阿莫西林、金霉素、氟苯尼考单独给药和三种药的联合给药。结果显示,给药氟苯尼考能显著增加耐药基因floRmcr-1的丰度,而给药阿莫西林则显著增加编码AcrAB-tolC外排泵的相关基因,如marAsoxSsdiArobevgS and phoP。这三种抗生素给药都显著增加微生物群中变形菌门的丰度。我们推测,耐药基因宿主埃希菌属丰度的上升,主要是由于在脉冲式抗生素给药下,其携带了β-内酰胺类、氯霉素和四环素耐药基因。这些结果表明,脉冲式阿莫西林、金霉素、氟苯尼考或三种药物的联合给药都能显著提高微生物群中变形菌门的丰度,而且会增加特定耐药基因的丰度。耐药基因大类主要由多重耐药基因组成,并且在抗生素处理的组别中,多重耐药基因的丰度与耐药基因总丰度具有很强的相关性。本研究对经脉冲式抗生素给药的鸡的粪便微生物群和耐药组的改变提供了全面的见解。



Abstract  

Antimicrobial resistance has become a global problem that poses great threats to human health.  Antimicrobials are widely used in broiler chicken production and consequently affect their gut microbiota and resistome.  To better understand how continuous antimicrobial use in farm animals alters their microbial ecology, we used a metagenomic approach to investigate the effects of pulsed antimicrobial administration on the bacterial community, antibiotic resistance genes (ARGs) and ARG bacterial hosts in the feces of broiler chickens.  Chickens received three 5-day courses of individual or combined antimicrobials, including amoxicillin, chlortetracycline and florfenicol.  The florfenicol administration significantly increased the abundance of mcr-1 gene accompanied by floR gene, while amoxicillin significantly increased the abundance of genes encoding the AcrAB-tolC multidrug efflux pump (marA, soxS, sdiA, rob, evgS and phoP).  These three antimicrobials all led to an increase in Proteobacteria.  The increase in ARG host, Escherichia, was mainly attributed to the β-lactam, chloramphenicol and tetracycline resistance genes harbored by Escherichia under the pulsed antimicrobial treatments.  These results indicated that pulsed antimicrobial administration with amoxicillin, chlortetracycline, florfenicol or their combinations significantly increased the abundance of Proteobacteria and enhanced the abundance of particular ARGs.  The ARG types were occupied by the multidrug resistance genes and had significant correlations with the total ARGs in the antimicrobial-treated groups.  The results of this study provide comprehensive insight into pulsed antimicrobial-mediated alteration of chicken fecal microbiota and resistome.

Keywords:  metagenomic       chicken        antimicrobials        resistome        microbial community  
Received: 15 August 2022   Online: 24 November 2022   Accepted: 14 October 2022
Fund: This work was supported by the Laboratory of Lingnan Modern Agriculture Project, China (NT2021006), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (32121004), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program, China (2019BT02N054).  
About author:  ZHAO Ruo-nan, E-mail: zrn_327@163.com; CHEN Si-yuan, E-mail: 1394974930@qq.com; #Correspondence ZENG Zhen-ling, E-mail: zlzeng@scau.edu.cn; XIONG Wen-guang, E-mail: xiongwg@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. 2023. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes. Journal of Integrative Agriculture, 22(6): 1857-1869.

Agga G E, Schmidt J W, Arthur T M. 2016. Effects of in-feed chlortetracycline prophylaxis in beef cattle on animal health and antimicrobial-resistant Escherichia coliApplied and Environmental Microbiology82, 7197–7204.

Agunos A, Léger D, Carson C. 2012. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. The Canadian Veterinary Journal53, 1289.

Antonopoulos D A, Huse S M, Morrison H G, Schmidt T M, Sogin M L, Young V B. 2009. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infection and Immunity77, 2367–2375.

Arango-Argoty G, Garner E, Pruden A, Heath L S, Vikesland P, Zhang L. 2018. DeepARG: A deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome6, 23.

Bandyopadhyay S, Samanta I. 2020. Antimicrobial resistance in agri-food chain and companion animals as a re-emerging menace in post-COVID epoch: Low-and middle-income countries perspective and mitigation strategies. Frontiers in Veterinary Science7, 620.

Cameron-Veas K, Sola-Gines M, Moreno M A, Fraile L, Migura-Garcia L. 2015. Impact of the use of beta-lactam antimicrobials on the emergence of Escherichia coli isolates resistant to cephalosporins under standard pig-rearing conditions. Applied and Environmental Microbiology81, 1782–1787.

Cantón R, Ruiz-Garbajosa P. 2011. Co-resistance: An opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology11, 477–485.

Carattoli A, Zankari E, García-Fernández A, Larsen V M, Lund O, Villa L, Aarestrup F M, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy58, 3895–3903.

Chetri S, Bhowmik D, Paul D, Pandey P, Chanda D D, Chakravarty A, Bora D, Bhattacharjee A. 2019. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coliBMC Microbiology19, 1–7.

Cuccato M, Rubiola S, Giannuzzi D, Grego E, Pregel P, Divari S, Cannizzo F T. 2021. 16S rRNA sequencing analysis of the gut microbiota in broiler chickens prophylactically administered with antimicrobial agents. Antibiotics10, 146.

D’Agata E M. 2018. Addressing the problem of multidrug-resistant organisms in dialysis. Clinical Journal of the American Society of Nephrology13, 666–668.

Du D, Xuan W K, Neuberger A, van Veen H W, Pos K M, Piddock L J, Luisi B F. 2018. Multidrug efflux pumps: Structure, function and regulation. Nature Reviews Microbiology16, 523–539.

Elgeddawy S A, Shaheen H M, ElSayed Y S, Abd Elaziz M, Darwish A, Samak D, Batiha G E, Mady R A, Bin-Jumah M, Allam A A. 2020. Effects of the dietary inclusion of a probiotic or prebiotic on florfenicol pharmacokinetic profile in broiler chicken. Journal of Animal Physiology and Animal Nutrition104, 549–557.

Elokil A A, Abouelezz K F, Ahmad H I, Pan Y, Li S. 2020. Investigation of the impacts of antibiotic exposure on the diversity of the gut microbiota in chicks. Animals10, 896.

Hendriksen R S, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Röder T, Nieuwenhuijse D, Pedersen S K, Kjeldgaard J. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications10, 1–12.

Hiltunen T, Virta M, Laine A L. 2017. Antibiotic resistance in the wild: An eco-evolutionary perspective. Philosophical Transactions of the Royal Society (B: Biological Sciences), 372, 20160039.

Huson D H, Weber N. 2013. Microbial community analysis using MEGAN. Methods in Enzymology531, 465–485.

Hyatt D, Chen G L, Locascio P F, Land M L, Larimer F W, Hauser L J. 2010. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119.

Ishii S, Suzuki S, Norden-Krichmar T M, Tenney A, Chain P S, Scholz M B, Nealson K H, Bretschger O. 2013. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nature Communications4, 1601.

Jacob J. 2015. Antibiotics approved for use in conventional poultry production. [2022-2-7]. https://poultry.extension.org/articles/feeds-and-feeding-of-poultry/feed-additives-for-poultry/drugs-approved-for-use-in-conventional-poultry-production/

Karkman A, Pärnänen K, Larsson D. 2019. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications10, 1–8.

Kent A G, Vill A C, Shi Q, Satlin M J, Brito I L. 2020. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nature Communications11, 1–9.

Li X Z, Plésiat P, Nikaido H. 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews28, 337–418.

Liu Y Y, Wang Y, Walsh T R, Yi L X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J H, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases16, 161–168.

Looft T, Johnson T A, Allen H K, Bayles D O, Alt D P, Stedtfeld R D, Sul W J, Stedtfeld T M, Chai B, Cole J R, Hashsham S A, Tiedje J M, Stanton T B. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America109, 1691–1696.

Ma L, Xia Y, Li B, Yang Y, Li L G, Tiedje J M, Zhang T. 2016. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human Feces. Environmental Science & Technology50, 420–427.

Mao Y, Xia Y, Wang Z, Zhang T. 2014. Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Applied Microbiology and Biotechnology98, 6885–6895.

McInnes R S, McCallum G E, Lamberte L E, van Schaik W. 2020. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current Opinion in Microbiology53, 35–43.

El Meouche I, Dunlop M J. 2018. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science362, 686–690.

Micoli F, Bagnoli F, Rappuoli R, Serruto D. 2021. The role of vaccines in combatting antimicrobial resistance. Nature Reviews Microbiology19, 287–302.

Modolo L V, da-Silva C J, Brandão D S, Chaves I S. 2018. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. Journal of Advanced Research13, 29–37.

Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. 2009. INTEGRALL: A database and search engine for integrons, integrases and gene cassettes. Bioinformatics25, 1096–1098.

Nobel Y R, Cox L M, Kirigin F F, Bokulich N A, Yamanishi S, Teitler I, Chung J, Sohn J, Barber C M, Goldfarb D S. 2015. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nature Communications6, 1–15.

OECD (Organization for Economic Co-operation and Development), FAO (Food and Agriculture Organization of the United Nations). 2020. OECD–Food and Agriculture Organization of the United Nations Agricultural Outlook 2020–2029. OECD Publishing/Food and Agriculture Organization of the United Nations, Paris, France.

Sáenz J S, Marques T V, Barone R S C, Cyrino J E P, Kublik S, Nesme J, Schloter M, Rath S, Vestergaard G. 2019. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicusMicrobiome7, 24.

Schuster S, Vavra M, Schweigger T M, Rossen J W, Matsumura Y, Kern W V. 2017. Contribution of AcrAB-TolC to multidrug resistance in an Escherichia coli sequence type 131 isolate. International Journal of Antimicrobial Agents50, 477–481.

Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews28, 519–542.

Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Research34, D32–D36.

Sommer M O, Church G M, Dantas G. 2010. The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence1, 299–303.

Tiseo K, Huber L, Gilbert M, Robinson T P, Van Boeckel T P. 2020. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics9, 918.

Vester B. 2018. The cfr and cfr-like multiple resistance genes. Research in Microbiology169, 61–66.

van de Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D. 2013. The metagenome of the marine anammox bacterium Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology15, 1275–1289.

Wang C, Dong D, Strong P J, Zhu W, Ma Z, Qin Y, Wu W. 2017. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome5, 103.

Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T. 2015. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. Journal of Antimicrobial Chemotherapy70, 2182–2190.

Xiong W, Wang Y, Sun Y, Ma L, Zeng Q, Jiang X, Li A, Zeng Z, Zhang T. 2018. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome6, 34.

Yassour M, Vatanen T, Siljander H, Hämäläinen A M, Härkönen T, Ryhänen S J, Franzosa E A, Vlamakis H, Huttenhower C, Gevers D. 2016. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine8, 343ra81.

Yi L, Wang J, Gao Y, Liu Y, Doi Y, Wu R, Zeng Z, Liang Z, Liu J H. 2017. mcr-1-harboring Salmonella enterica serovar Typhimurium sequence type 34 in pigs, China. Emerging Infectious Diseases23, 291.

Yin X, Jiang X T, Chai B, Li L, Yang Y, Cole J R, Tiedje J M, Zhang T. 2018. ARGs-OAP v2. 0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics34, 2263–2270.

Yu Z, He P, Shao L, Zhang H, Lü F. 2016. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age. Water Research106, 583–592.

Zeng J, Pan Y, Yang J, Hou M, Zeng Z, Xiong W. 2019. Metagenomic insights into the distribution of antibiotic resistome between the gut-associated environments and the pristine environments. Environment International126, 346–354.

Zhang Y J, Hu H W, Chen Q L, Singh B K, Yan H, Chen D, He J Z. 2019. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International130, 104912.

Zhao Y, Cocerva T, Cox S, Tardif S, Su J Q, Zhu Y G, Brandt K K. 2019. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment656, 512–520.

Zhao Y, Su J Q, An X L, Huang F Y, Rensing C, Brandt K K, Zhu Y G. 2018. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Science of the Total Environment621, 1224–1232.

[1] WANG Yong-li, HUANG Chao, YU Yang, CAI Ri-chun, SU Yong-chun, CHEN Zhi-wu, ZHENG Maiqing, CUI Huan-xian.

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1847-1856.

[2] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
[3] LI Xiang-dong, SHI Ming, PAN Hong, LU Xiu-juan, WEI Xin-yuan, LU Ping, LIAN Qi-xian, FU Yu-hua. Diversity in metagenomic sequences reveals new pathogenic fungus associated with smut in Job’s tears[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2257-2264.
No Suggested Reading articles found!