Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4074-4092    DOI: 10.1016/j.jia.2024.07.013
Special Issue: 园艺作物品质提升与逆境适应性Horticulture——Quality Improvement & Stress adaptation
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress

Congcong Zhang1, Han Wang1, Guojie Nai1, Lei Ma3, Xu Lu1, Haokai Yan1, Meishuang Gong2, Yuanyuan Li2, Ying Lai2, Zhihui Pu2, Li Wei2, Guiping Chen3, Ping Sun2, Baihong Chen1, Shaoying Ma4, Sheng Li1, 2, 5#

1 College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
3 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
4 Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
5 State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

盐胁迫是一种典型的非生物胁迫,导致植物生长缓慢、发育迟缓、产量和果实品质下降。施肥是保证作物正常生长的必要措施,其中,氮素更是关键元素。研究报道氮肥施加可提高作物耐盐性,但是,氮肥对葡萄耐盐性的影响尚不清楚。因此,本研究以酿酒葡萄幼苗‘黑比诺’为植物材料,研究200 mmol L-1NaCl处理下施用0.010.1 mol L-1 硝酸铵(N对葡萄耐盐性的影响。通过对葡萄幼苗叶片的生理指标、转录组和代谢组分析,发现0.01 mol L-1N施加显著降低了盐胁迫下葡萄叶片中超氧阴离子(O2.-)的积累,提高了超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性,促进了抗坏血酸(AsA)和谷胱甘肽(GSH的积累。转录组和代谢组联合分析表明,黄酮生物合成途径(ko00941)和黄酮和黄酮醇生物合成途径(ko00944是关键的响应通路进一步发现,槲皮素(C00389)的积累受到盐和氮的显著调节。同时,筛选到10关键差异基因与槲皮素含量变化高度相关(R2>0.9并构成互作网络。此外,我们也发现盐胁迫下叶面喷施槲皮素提高葡萄的SODPOD活性,增加AsAGSH含量,降低H2O2O2.-含量。因此,本研究应用氮肥和槲皮素改善了葡萄的耐盐性并鉴定到关键的响应基因,此结果为葡萄耐盐性提高和分子机制研究提供了新的思路。



Abstract  
Salt stress is a typical abiotic stress in plants that causes slow growth, stunting, and reduced yield and fruit quality.  Fertilization is necessary to ensure proper crop growth.  However, the effect of fertilization on salt tolerance in grapevine is unclear.  In this study, we investigated the effect of nitrogen fertilizer (0.01 and 0.1 mol L–1 NH4NO3) application on the salt (200 mmol L–1 NaCl) tolerance of grapevine based on physiological indices, and transcriptomic and metabolomic analyses.  The results revealed that 0.01 mol L–1 NH4NO3 supplementation significantly reduced the accumulation of superoxide anion (O2·), enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD), and improved the levels of ascorbic acid (AsA) and glutathione (GSH) in grape leaves compared to salt treatment alone.  Specifically, joint transcriptome and metabolome analyses showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in the flavonoid biosynthesis pathway (ko00941) and the flavone and flavonol biosynthesis pathway (ko00944).  In particular, the relative content of quercetin (C00389) was markedly regulated by salt and nitrogen.  Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities, increased the AsA and GSH contents, and reduced the H2O2 and O2· contents.  Meanwhile, 10 hub DEGs, which had high Pearson correlations (R2>0.9) with quercetin, were repressed by nitrogen.  In conclusion, all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response, thus providing a new perspective for improving salt tolerance in grapes.


Keywords:  grapevine       salt stress        nitrogen        multi-omics        quercetin        antioxidant  
Received: 07 September 2023   Accepted: 25 April 2024
Fund: 
This work was supported by the Key Talent Project of Gansu Provincial Party Committee Organization Department Funding, China (2023RCXM23), the Industrial Support of Gansu Provincial Department of Education Funding, China (2021CYZC-55) and the Key Research and Development Projects of Gansu Provincial Funding, China (21YF5NA090). 
About author:  Congcong Zhang, E-mail: 919634096@qq.com; #Correspondence Sheng Li, E-mail: lish@gsau.edu.cn

Cite this article: 

Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. 2024. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress. Journal of Integrative Agriculture, 23(12): 4074-4092.

Abdelkhalik A, Abd El-Mageed T A, Mohamed I A A, Semida W M, Al-Elwany O, Ibrahim I M, Hemida K A, El-Saadony M T, AbuQamar S F, El-Tarabily K A, Gyushi M A H. 2022. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper (Capsicum annum L.) plants. Frontiers in Plant Science13, 1079260.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology11, R106.

Ashraf M, Shahzad S M, Imtiaz M, Rizwan M S, Arif M S, Kausar R. 2018. Nitrogen nutrition and adaptation of glycophytes to saline environment: A review. Archives of Agronomy and Soil Science64, 1181–1206.

Bae J J, Choo Y S. 2006. Effects of calcium and nitrogen on the growth and antioxidative enzyme activity in soybean (Glycine max) under saline condition. Journal of Ecology and Field Biology29, 157–163.

Britto D T, Kronzucker H J. 2002. NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology159, 567–584.

Chatzigianni M, Savvas D, Papadopoulou E A, Aliferis K A, Ntatsi G. 2023. Combined effect of salt stress and nitrogen level on the primary metabolism of two contrasting hydroponically grown Cichorium spinosum L. ecotypes. Biomolecules13, 607.

Fardus J, Hossain M S, Fujita M. 2021. Modulation of the antioxidant defense system by exogenous l-glutamic acid application enhances salt tolerance in lentil (Lens culinaris Medik). Biomolecules11, 587.

Feng K, Yu J H, Cheng Y, Ruan M Y, Wang R Q, Ye Q J, Zhou G Z, Li Z M, Yao Z P, Yang Y J, Zheng Q S, Wan H J. 2016. The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science7, 1279.

Foyer C H. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell17, 1866–1875.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen L J. 2013. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research41, D808-D815.

Frechilla S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio-Tejo P. 2001. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation35, 171–179.

Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. 2023. Exogenous proline enhances systemic defense against salt stress in celery by regulating photosystem, phenolic compounds, and antioxidant system. Plants-Basel12, 928.

Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry48, 909–930.

Gong Z Z. 2021. Plant abiotic stress: New insights into the factors that activate and modulate plant responses. Journal of Integrative Plant Biology63, 429–430.

Hasanuzzaman M, Nahar K, Alam M M, Bhuyan M H M B, Oku H, Fujita M. 2018. Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry126, 173–186.

Hasanuzzaman M, Raihan M R H, Masud A A C, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. 2021. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences22, 9326.

Hoang M T T, Doan M T A, Nguyen T, Tra D P, Chu T N, Dang T P T, Quach P N D. 2021. Phenotypic characterization of Arabidopsis ascorbate and glutathione deficient mutants under abiotic stresses. Agronomy-Basel11, 764.

Jan R, Kim N, Lee S H, Khan M A, Asaf S, Lubna, Park J R, Asif S, Lee I J, Kim K M. 2021. Enhanced flavonoid accumulation reduces combined salt and heat stress through regulation of transcriptional and hormonal mechanisms. Frontiers in Plant Science12, 796956.

Janczak-Pieniazek M, Migut D, Piechowiak T, Balawejder M. 2022. Assessment of the impact of the application of a quercetin-copper complex on the course of physiological and biochemical processes in wheat plants (Triticum aestivum L.) growing under saline conditions. Cells11, 1141.

Janczak-Pieniazek M, Migut D, Piechowiak T, Buczek J, Balawejder M. 2021. The effect of exogenous application of quercetin derivative solutions on the course of physiological and biochemical processes in wheat seedlings. International Journal of Molecular Sciences22, 6882.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research36, D480–D484.

Keller M. 2010. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Australian Journal of Grape and Wine Research16, 56–69.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Koffler B E, Polanschutz L, Zechmann B. 2014. Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma251, 755–769.

Koonin E V, Fedorova N D, Jackson J D, Jacobs A R, Krylov D M, Makarova K S, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Rogozin I B, Smirnov S, Sorokin A V, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology5, R7.

Li J, Yu B, Ma C, Li H, Jiang D, Nan J, Xu M, Liu H, Chen S, Duanmu H, Li H. 2022. Functional characterization of sugar beet m14 antioxidant enzymes in plant salt stress tolerance. Antioxidants12, 57.

Li X, Li S, Wang J, Lin J. 2020. Exogenous abscisic acid alleviates harmful effect of salt and alkali stresses on wheat seedlings. International Journal of Environmental Research and Public Health17, 3770.

Litalien A, Zeeb B. 2020. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of the Total Environment698, 134235.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods25, 402–408.

Lu W, Zhao Y, Liu J, Zhou B, Wei G, Ni R, Zhang S, Guo J. 2023. Comparative analysis of antioxidant system and salt-stress tolerance in two hibiscus cultivars exposed to NaCl toxicity. Plants-Basel12, 1525.

Meng S, Su L, Li Y M, Wang Y J, Zhang C X, Zhao Z. 2016. Nitrate and ammonium contribute to the distinct nitrogen metabolism of populus simonii during moderate salt stress. PLoS ONE11, e0150354.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science7, 405–410.

Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology23, 663–679.

Parvin K, Hasanuzzaman M, Bhuyan M, Mohsin S M, Fujita A M. 2019. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants-Basel8, 247.

Punia H, Tokas J, Malik A, Bajguz A, El-Sheikh M A, Ahmad P. 2021. Ascorbate-glutathione oxidant scavengers, metabolome analysis and adaptation mechanisms of ion exclusion in sorghum under salt stress. International Journal of Molecular Sciences22, 13249.

Ramakers C, Ruijter J M, Deprez R H, Moorman A F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters339, 62–66.

Sadak M S, Sekara A, Al-Ashkar I, Habib-Ur-Rahman M, Skalicky M, Brestic M, Kumar A, Sabagh A E, Abdelhamid M T. 2022. Exogenous aspartic acid alleviates salt stress-induced decline in growth by enhancing antioxidants and compatible solutes while reducing reactive oxygen species in wheat. Frontiers in Plant Science13, 987641.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research13, 2498–2504.

Shao A, Sun Z, Fan S, Xu X, Wang W, Amombo E, Yin Y, Li X, Wang G, Wang H, Fu J. 2020. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings. PeerJ8, e10427.

Sheikhalipour M, Mohammadi S A, Esmaielpour B, Zareei E, Kulak M, Ali S, Nouraein M, Bahrami M K, Gohari G, Fotopoulos V. 2022. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC Plant Biology22, 380.

Sikder R K, Wang X R, Zhang H S, Gui H P, Dong Q, Jin D S, Song M Z. 2020. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutumPlants-Basel9, 450.

Singh M, Singh V P, Prasad S M. 2019. Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiology and Biochemistry141, 466–476.

Singh P, Arif Y, Bajguz A, Hayat S. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry166, 10–19.

Song Z H, Yang Q, Dong B Y, Li N, Wang M Y, Du T T, Liu N, Niu L L, Jin H J, Meng D, Fu Y J. 2022. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. Journal of Experimental Botany73, 5992–6008.

Tang Z H, Liu Y J, Guo X R, Zu Y G. 2011. The combined effects of salinity and nitrogen forms on Catharanthus roseus: The role of internal ammonium and free amino acids during salt stress. Journal of Plant Nutrition and Soil Science174, 135–144.

Tatusov R L, Galperin M Y, Natale D A, Koonin E V. 2000. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research28, 33–36.

Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science8, 1032.

Wang L, Zheng J, Zhou G, Li J, Qian C, Lin G, Li Y, Zuo Q. 2023. Moderate nitrogen application improved salt tolerance by enhancing photosynthesis, antioxidants, and osmotic adjustment in rapeseed (Brassica napus L.). Frontiers in Plant Science14, 1196319.

Wang M Y, Dong B Y, Song Z H, Qi M, Chen T, Du T T, Cao H Y, Liu N, Meng D, Yang Q, Fu Y J. 2023. Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (L.) Millsp.). Plant Physiology and Biochemistry196, 381–392.

Wei M Y, Li H, Zhang L D, Guo Z J, Liu J Y, Ding Q S, Zhong Y H, Li J, Ma D N, Zheng H L. 2022. Exogenous hydrogen sulfide mediates Na+ and K+ fluxes of salt gland in salt-secreting mangrove plant avicennia marina. Tree Physiology42, 1812–1826.

Wishart D S, Feunang Y D, Marcu A, Guo A C, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, et al. 2018. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research46, D608–D617.

Xia F, Cheng H, Chen L, Zhu H, Mao P, Wang M. 2020. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biology20, 104.

Xiu M H, Li Z Z, Chen D C, Chen S, Curbo M E, Wu H J E, Tong Y S, Tan S P, Zhang X Y. 2020. Interrelationships between BDNF, superoxide dismutase, and cognitive impairment in drug-naive first-episode patients with schizophrenia. Schizophrenia Bulletin46, 1498–1510.

Xu Z, Zhou J, Ren T, Du H, Liu H, Li Y, Zhang C. 2020. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetumPlant Biology22, 813–821.

Yao Y A, Sun Y F, Feng Q, Zhang X, Gao Y F, Ou Y B, Yang F, Xie W, de Dios V R, Ma J B, Yousefi M. 2021. Acclimation to nitrogen×salt stress in Populus bolleana mediated by potassium/sodium balance. Industrial Crops and Products170, 113789.

Yasir T A, Khan A, Skalicky M, Wasaya A, Rehmani M I A, Sarwar N, Mubeen K, Aziz M, Hassan M M, Hassan F A S, Iqbal M A, Brestic M, Islam M S, Danish S, El Sabagh A. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules26, 2576.

Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology11, R14.

Yu B, Wang L, Guan Q, Xue X, Gao W, Nie P. 2023. Exogenous 24-epibrassinolide promoted growth and nitrogen absorption and assimilation efficiency of apple seedlings under salt stress. Frontiers in Plant Science14, 1178085.

van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology71, 403–433.

Zhang C, Lu X, Yan H, Gong M, Wang W, Chen B, Ma S, Li S. 2023. Nitrogen application improves salt tolerance of grape seedlings via regulating hormone metabolism. Physiologia Plantarum175, e13896.

Zhang M, Lu X, Ren T, Marowa P, Meng C, Wang J, Yang H, Li C, Zhang L, Xu Z. 2023. Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways. Frontiers in Plant Science14, 1123856.

Zhang Q, Zheng G, Wang Q, Zhu J, Zhou Z, Zhou W, Xu J, Sun H, Zhong J, Gu Y, Yin Z, Du Y L, Du J D. 2022. Molecular mechanisms of flavonoid accumulation in germinating common bean (Phaseolus vulgaris) under salt stress. Frontiers in Nutrition9, 928805.

Zhang Y, Hou K, Qian H, Gao Y, Fang Y, Xiao S, Tang S, Zhang Q, Qu W, Ren W. 2022. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Science of the Total Environment837, 155808.

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences22, 4609.

[1] Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E. L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2923-2940.
[2] LI Wen-qian, HAN Ming-ming, PANG Dang-wei, CHEN Jin, WANG Yuan-yuan, DONG He-he, CHANG Yong-lan, JIN Min, LUO Yong-li, LI Yong, WANG Zhen-lin. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1290-1309.
[3] YANG Sheng-di, GUO Da-long, PEI Mao-song, WEI Tong-lu, LIU Hai-nan, BIAN Lu, YU Ke-ke, ZHANG Guo-hai, YU Yi-he. Identification of the DEAD-box RNA helicase family members in grapevine reveals that VviDEADRH25a confers tolerance to drought stress[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1357-1374.
[4] WU Ya-wei, ZHAO Bo, LI Xiao-long, LIU Qin-lin, FENG Dong-ju, LAN Tian-qiong, KONG Fan-lei, LI Qiang, YUAN Ji-chao. Nitrogen application affects maize grain filling by regulating grain water relations[J]. >Journal of Integrative Agriculture, 2022, 21(4): 977-994.
[5] MA Xuan-yan, JIAO Wei-qi, LI Heng, ZHANG Wei, REN Wei-chao, WU Yan, ZHANG Zhi-chang, LI Bao-hua, ZHOU Shan-yue. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3684-3691.
[6] ZHAO Ji-chun, AO Miao, HE Xiao-qin, LI Wei-zhou, DENG Li-li, ZENG Kai-fang, MING Jian. Changes in phenolic content, composition and antioxidant activity of blood oranges during cold and on-tree storage[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3669-3683.
[7] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
[8] HU Guo-jun, DONG Ya-feng, ZHANG Zun-ping, FAN Xu-dong, REN Fan. Elimination of grapevine fleck virus and grapevine rupestris stem pitting-associated virus from Vitis vinifera 87-1 by ribavirin combined with thermotherapy[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2463-2470.
[9] ZHANG Xiu-ming, WU Yi-fei, LI Zhi, SONG Chang-bing, WANG Xi-ping. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.)[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1407-1434.
[10] REN Fang, ZHANG Zun-ping, FAN Xu-dong, HU Guo-jun, ZHANG Meng-yan, DONG Ya-feng. A sensitive SYBR Green RT-qPCR method for grapevine virus E and its application for virus detection in different grapevine sample types[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1834-1841.
[11] YU Xiu-ming, LI Jie-fa, ZHU Li-na, WANG Bo, WANG Lei, BAI Yang, ZHANG Cai-xi, XU Wen-ping, WANG Shi-ping. Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.×Vitis labrusca L.)[J]. >Journal of Integrative Agriculture, 2015, 14(1): 67-79.
No Suggested Reading articles found!