Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2200-2212    DOI: 10.1016/j.jia.2022.11.007
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features

WANG Jie1, 2, LEI Qiu-xia1, 2, CAO Ding-guo1, 2, ZHOU Yan1, 2, HAN Hai-xia1, 2, LIU Wei1, 2, LI Da-peng1, 2, LI Fu-wei1, 2, LIU Jie1, 2#

1 Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China 
2 Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

世界范围内有各种品种、类型的鸡,它们的品种特征各不相同,是宝贵的遗传资源。目前,对影响这些鸡品种的特异性表型的遗传决定因素的研究还有待进一步加深。深入了解品种特异性表型变异的潜在遗传机制可以帮助育种者培育和改良鸡品种。本研究对7个来自山东省的本地品种共140只鸡和20只引进的隐性白羽鸡的全基因组进行了重测序。基于常染色体单核苷酸多态性(SNPs)的群体基因组比较结果揭示了鸡群基于地理距离的聚类模式。通过全基因组范围内的选择性清除分析,本研究确定了甲状腺刺激激素受体(TSHR,繁殖性状,生理节律),红细胞膜蛋白带4.1 样 1 (EPB41L1,体型大小)和烷基甘油单加氧酶(AGMO,攻击行为)是主要候选的鸡品种特异性决定基因。此外,本研究利用机器学习分类模型,基于与品种特征显著相关的SNPs对鸡的品种进行判别,预测准确率为92%,可有效实现莱芜黑鸡的品种鉴定。本研究首次提供了山东地方鸡种的完整基因组数据,相关的分析揭示了山东地方鸡种的地理模式和鸡的品种特异性性状相关的潜在的候选基因。此外,本研究开发了一个基于机器学习的预测模型,使用SNPs数据进行品种判别,该部分内容为利用机器学习方法开发品种分子身份证提供了参考。本研究揭示的地方鸡品种遗传基础有助于更好地理解鸡资源特性的内在机制。

 



Abstract  Many different chicken breeds are found around the world, their features vary among them, and they are valuable resources.  Currently, there is a huge lack of knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these breeds of chickens.  Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved chicken breeds.  The whole-genomes of 140 chickens from 7 Shandong native breeds and 20 introduced recessive white chickens from China were re-sequenced.  Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed geographically based clusters among the chickens.  Through genome-wide scans for selective sweeps, we identified thyroid stimulating hormone receptor (TSHR, reproductive traits, circadian rhythm), erythrocyte membrane protein band 4.1 like 1 (EPB41L1, body size), and alkylglycerol monooxygenase (AGMO, aggressive behavior), as major candidate breed-specific determining genes in chickens.  In addition, we used a machine learning classification model to predict chicken breeds based on the SNPs significantly associated with recourse characteristics, and the prediction accuracy was 92%, which can effectively achieve the breed identification of Laiwu Black chickens.  We provide the first comprehensive genomic data of the Shandong indigenous chickens.  Our analyses revealed phylogeographic patterns among the Shandong indigenous chickens and candidate genes that potentially contribute to breed-specific traits of the chickens.  In addition, we developed a machine learning-based prediction model using SNP data to identify chicken breeds.  The genetic basis of indigenous chicken breeds revealed in this study is useful to better understand the mechanisms underlying the resource characteristics of chicken.
Keywords:  chicken        genome         genetic diversity         support vector machine  
Received: 15 May 2022   Accepted: 20 October 2022
Fund: This research was funded by the China Agriculture Research System of MOF and MARA (CARS-41), the Agricultural Breed Project of Shandong Province, China (2019LZGC019 and 2020LZGC013), t h e Shandong Provincial Natural Science Foundation, China (ZR2020MC169), and the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2022C04 and CXGC2022E11).
About author:  WANG Jie, E-mail: wangjie4007@126.com; #Correspondence LIU Jie, E-mail: jqsyzslj@163.com

Cite this article: 

WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. 2023. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features. Journal of Integrative Agriculture, 22(7): 2200-2212.

Aggrey S. 2010. Poultry Breeding and Genetics: Encyclopedia of Animal Science. Commonwealth Agricultural Bureaux International, North America

Akey J M, Ruhe A L, Akey D T, Wong A K, Connelly C F, Madeoy J, Nicholas T J, Neff M W. 2010. Tracking footprints of artificial selection in the dog genome. Proceedings of the National Academy of Sciences of the United States of America107, 1160–1165.

Fernandes Júnior G A, Espigolan R, Ribeiro A M F, Carvalheiro R, de Albuquerque L G. 2020. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods. Journal of Animal Science98, skaa179.

de Araujo Neto F R, Santos D J A, Fernandes Júnior G A, Aspilcueta-Borquis R R, Nascimento A V D, de Oliveira Seno L, Tonhati H, de Oliveira H N. 2020. Genome-wide association studies for growth traits in buffaloes using the single step genomic BLUP. Journal of Applied Genetics61, 113–115.

West B, Zhou B X. 1988. Did chickens go North? New evidence for domestication. Journal of Archaeological Science15, 515–533.

Chang C S, Chen C F, Berthouly-Salazar C, Chazara O, Lee Y P, Chang C M, Chang K H, Bed’Hom B, Tixier-Boichard M. 2012. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Animal Genetics43, 172–182.

Cristianini N, Shawe-Taylor J. 2000. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, United Kingdom.

D’Alessandro E, Sottile G, Sardina M T, Criscione A, Bordonaro S, Sutera A M, Zumbo A, Portolano B, Mastrangelo S. 2020. Genome-wide analyses reveal the regions involved in the phenotypic diversity in Sicilian pigs. Animal Genetics51, 101–105.

Das R, Ivanisenko V A, Anashkina A A, Upadhyai P. 2020. The story of the lost twins: Decoding the genetic identities of the Kumhar and Kurcha populations from the Indian subcontinent. BMC Genetics21(Suppl.1), 117.

Dong X G, Gao L B, Zhang H J, Wang J, Qiu K, Qi G H, Wu S G. 2021. Discriminating eggs from two local breeds based on fatty acid profile and flavor characteristics combined with classification algorithms. Food Science of Animal Resources41, 936–949

Dorshorst B, Okimoto R, Ashwell C. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. The Journal of Heredity101, 339–350.

Freese N H, Lam B A, Staton M, Scott A, Chapman S C. 2014. A novel gain-of-function mutation of the proneural IRX1 and IRX2 genes disrupts axis elongation in the Araucana rumpless chicken. PLoS ONE9, e112364.

Grottesi A, Gabbianelli F, Valentini A, Chillemi G. 2020. Structural and dynamic analysis of G558R mutation in chicken TSHR gene shows altered signal transduction and corroborates its role as a domestication gene. Animal Genetics51, 51–57.

Hajiloo M, Damavandi B, Hooshsadat M, Sangi F, Mackey J R, Cass C E, Greiner R, Damaraju S. 2013. Breast cancer prediction using genome wide single nucleotide polymorphism data. BMC Bioinformatics14(Suppl. 13), S3.

Hanon E A, Lincoln G A, Fustin J M, Dardente H, Masson-Pévet M, Morgan P J, Hazlerigg D G. 2008. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Current Biology18, 1147–1152.

Ikehata M, Yamada A, Fujita K, Yoshida Y, Kato T, Sakashita A, Ogata H, Iijima T, Kuroda M, Chikazu D, Kamijo R. 2018. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation. Biochemical and Biophysical Research Communications500, 525–529.

Jeong H, Kim K, Caetano-Anollés K, Kim H, Kim B K, Yi J K, Ha J J, Cho S, Oh D Y. 2016. Whole genome sequencing of Gyeongbuk Araucana, a newly developed blue-egg laying chicken breed, reveals its origin and genetic characteristics. Scientific Reports6, 26484.

Kang L, Zhang N, Zhang Y, Yan H, Tang H, Yang C, Wang H, Jiang Y. 2012. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene. Molecular Biology Reports39, 2967–2973.

Kourou K, Exarchos T P, Exarchos K P, Karamouzis M V, Fotiadis D I. 2015. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal13, 8–17.

Leader B, Lim H, Carabatsos M J, Harrington A, Ecsedy J, Pellman D, Maas R, Leder P. 2002. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biology4, 921–928.

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research49(W1), W293–W296.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25, 1754–1760.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics (Oxford, England), 26, 589–595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics (Oxford, England), 25, 2078–2079.

Listgarten J, Damaraju S, Poulin B, Cook L, Dufour J, Driga A, Mackey J, Wishart D, Greiner R, Zanke B. 2004. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer ResearchAn Official Journal of the American Association for Cancer Research10, 2725–2737.

Luo W, Luo C, Wang M, Guo L, Chen X, Li Z, Zheng M, Folaniyi B S, Luo W, Shu D, Song L, Fang M, Zhang X, Qu H, Nie Q. 2020. Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Scientific Reports10, 14532.

Mathé C, Sagot M F, Schiex T, Rouzé P. 2002. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research30, 4103–4117.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research20, 1297–1303.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Meyer D, Weingessel A. 2015. e1071: Misc Functions of the Department of Statistics. Probability Theory Group (formerly: E1071), TU Wien, Wien.

Miao Y W, Peng M S, Wu G S, Ouyang Y N, Yang Z Y, Yu N, Liang J P, Pianchou G, Beja-Pereira A, Mitra B, Palanichamy M G, Baig M, Chaudhuri T K, Shen Y Y, Kong Q P, Murphy R W, Yao Y G, Zhang Y P. 2013. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity110, 277–282.

Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C. 2004. Predicting genetic regulatory response using classification. Bioinformatics (Oxford, England), 20(Suppl.1), i232–i240.

Mieth B, Kloft M, Rodríguez J A, Sonnenburg S, Vobruba R, Morcillo-Suárez C, Farré X, Marigorta U M, Fehr E, Dickhaus T, Blanchard G, Schunk D, Navarro A, Müller K R. 2016. Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies. Scientific Reports6, 36671.

Mortimer N, Ganster T, O’Leary A, Popp S, Freudenberg F, Reif A, Soler Artigas M, Ribasés M, Ramos-Quiroga J A, Lesch K P, Rivero O. 2019. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology156, 107557.

Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp P J, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, et al. 2008. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature452, 317–322.

Nie C, Almeida P, Jia Y, Bao H, Ning Z, Qu L. 2019. Genome-wide single-nucleotide polymorphism data unveil admixture of Chinese indigenous chicken breeds with commercial breeds. Genome Biology and Evolution11, 1847–1856.

Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M. 2011. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Current Biology21, 955–960.

Pirooznia M, Yang J Y, Yang M Q, Deng Y. 2008. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, 9(Suppl.1), S13.

Rubin C J, Zody M C, Eriksson J, Meadows J R, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, Hallböök F, Besnier F, Carlborg O, Bed’hom B, Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature464, 587–591.

Smola A, Lkopf B. 2004. A tutorial on support vector regression. Statistics and Computing14, 199–222.

Sun Y, Liu R, Zhao G, Zheng M, Sun Y, Yu X, Li P, Wen J. 2014. Genome-wide linkage analysis and association study identifies loci for polydactyly in chickens. G3 (Bethesda, Md.), 4, 1167–1172.

Sun Y, Zhao G, Liu R, Zheng M, Hu Y, Wu D, Zhang L, Li P, Wen J. 2013. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics14, 458.

Suzuki D, Bush J R, Bryce D M, Kamijo R, Beier F. 2017. Rac1 dosage is crucial for normal endochondral bone growth. Endocrinology158, 3386–3398.

Tetkova A, Jansova D, Susor A. 2019. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Scientific Reports9, 13121.

Wang H, Parra M, Conboy J G, Hillyer C D, Mohandas N, An X. 2020. Selective effects of protein 4.1N deficiency on neuroendocrine and reproductive systems. Scientific Reports10, 16947.

Wang M S, Huo Y X, Li Y, Otecko N O, Su L Y, Xu H B, Wu S F, Peng M S, Liu H Q, Zeng L, Irwin D M, Yao Y G, Wu D D, Zhang Y P. 2016. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. Journal of Molecular Cell Biology8, 542–552.

Wang M S, Otecko N O, Wang S, Wu D D, Yang M M, Xu Y L, Murphy R W, Peng M S, Zhang Y P. 2017. An evolutionary genomic perspective on the breeding of dwarf chickens. Molecular Biology and Evolution34, 3081–3088.

Wang M S, Thakur M, Peng M S, Jiang Y, Frantz L, Li M, Zhang J J, Wang S, Peters J, Otecko N O, Suwannapoom C, Guo X, Zheng Z Q, Esmailizadeh A, Hirimuthugoda N Y, Ashari H, Suladari S, Zein M, Kusza S, Sohrabi S, et al. 2020. 863 genomes reveal the origin and domestication of chicken. Cell Research30, 693–701.

Wang Q, Li D, Guo A, Li M, Li L, Zhou J, Mishra S K, Li G, Duan Y, Li Q. 2020. Whole-genome resequencing of Dulong chicken reveal signatures of selection. British Poultry Science61, 624–631.

Won K J, Prügel-Bennett A, Krogh A. 2004. Training HMM structure with genetic algorithm for biological sequence analysis. Bioinformatics (Oxford, England), 20, 3613–3619.

Wu Y, Zhang Y, Hou Z, Fan G, Pi J, Sun S, Chen J, Liu H, Du X, Shen J, Hu G, Chen W, Pan A, Yin P, Chen X, Pu Y, Zhang H, Liang Z, Jian J, Zhang H, et al. 2018. Population genomic data reveal genes related to important traits of quail. Gigascience7, giy049.

Xu M, Tantisira K G, Wu A, LitonjuaAA, Chu J H, Himes B E, Damask A, Weiss S T. 2011. Genome wide association study to predict severe asthma exacerbations in children using random forests classifiers. BMC Medical Genetics12, 90.

Yi G, Qu L, Liu J, Yan Y, Xu G, Yang N. 2014. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics15, 962.

Yi T M, Lander E S. 1993. Protein secondary structure prediction using nearest-neighbor methods. Journal of Molecular Biology232, 1117–1129.

Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S. 2003. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature426, 178–181.

Zhang W, Yang M, Zhou M, Wang Y, Wu X, Zhang X, Ding Y, Zhao G, Yin Z, Wang C. 2020. Identification of signatures of selection by whole-genome resequencing of a Chinese native pig. Frontiers in Genetics11, 566255.

Zhou G, Shen D, Zhang J, Su J, Tan S. 2005. Recognition of protein/gene names from text using an ensemble of classifiers. BMC Bioinformatics6(Suppl.1), S7.

Zhou Z, Li M, Cheng H, Fan W, Yuan Z, Gao Q, Xu Y, Guo Z, Zhang Y, Hu J, Liu H, Liu D, Chen W, Zheng Z, Jiang Y, Wen Z, Liu Y, Chen H, Xie M, Zhang Q, et al. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications9, 2648.

[1] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[2] WANG Yong-li, HUANG Chao, YU Yang, CAI Ri-chun, SU Yong-chun, CHEN Zhi-wu, ZHENG Maiqing, CUI Huan-xian.

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1847-1856.

[3] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[4] CUI Huan-xian, LUO Na, GUO Li-ping, LIU Lu, XING Si-yuan, ZHAO Gui-ping, WEN Jie. TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken[J]. >Journal of Integrative Agriculture, 2023, 22(3): 853-863.
[5] LIU Xiao-jing, WANG Yong-li, LIU Li, LIU Lu, ZHAO Gui-ping, WEN Jie, JIA Ya-xiong, CUI Huan-xian. Potential regulation of linoleic acid and volatile organic compound contents in meat of chickens by PLCD1[J]. >Journal of Integrative Agriculture, 2023, 22(1): 222-234.
[6] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
[7] ZENG Xian-ying, HE Xin-wen, MENG Fei, MA Qi, WANG Yan, BAO Hong-mei, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, LI Yan-bing, TIAN Guo-bin, CHEN Hua-lan. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2086-2094.
[8] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[9] CHEN Hong-yan, CHENG Bo-han, MA Yan-yan, ZHANG Qi, LENG Li, WANG Shou-zhi, LI Hui. HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling via directly enhancing JAK2 expression[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1740-1754.
[10] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
[11] WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
[12] HUANG Hua-yun, LIANG Zhong, LIU Long-zhou, LI Chun-miao, HUANG Zhen-yang, WANG Qian-bao, LI Shou-feng, ZHAO Zhen-hua. C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathway[J]. >Journal of Integrative Agriculture, 2022, 21(2): 496-503.
[13] CHENG Wan-li, ZENG Li, YANG Xue, HUANG Dian, YU Hao, CHEN Wen, CAI Min-min, ZHENG Long-yu, YU Zi-niu, ZHANG Ji-bin. Preparation and efficacy evaluation of Paenibacillus polymyxa KM2501-1 microbial organic fertilizer against root-knot nematodes[J]. >Journal of Integrative Agriculture, 2022, 21(2): 542-551.
[14] WANG Ying-jie, LIANG Ya-xi, HU Fu-li, SUN Ying-fei, ZOU Meng-yun, LUO Rong-long, PENG Xiu-li. Chinese herbal formulae defend against Mycoplasma gallisepticum infection[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3026-3036.
[15] JIN Kai, ZHOU Jing, ZUO Qi-sheng, LI Jian-cheng, Jiuzhou SONG, ZHANG Ya-ni, CHANG Guo-bing, CHEN Guo-hong, LI Bi-chun. UBE2I stimulates female gonadal differentiation in chicken (Gallus gallus) embryos[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2986-2994.
No Suggested Reading articles found!