Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1847-1856    DOI: 10.1016/j.jia.2023.04.001
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes

WANG Yong-li1*, HUANG Chao2*, YU Yang2*, CAI Ri-chun2, SU Yong-chun2, CHEN Zhi-wu2, ZHENG Mai-qing1#, CUI Huan-xian1#

1 State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 Guangxi Jinling Agriculture and Animal Husbandry Group Co., Ltd., Nanning 530049, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

三黄鸡是中国的优质地方鸡品种,黄羽、爪和得名。然而,三黄鸡黄胫变“青胫”的异常现象一直是人们关注的问题,它严重降低了黄羽肉鸡的胴体质量和经济效益。在研究中,首先系统地调查了小腿异常肤色的原因。生理解剖显示,鸡胫部皮肤异常主要是由于真皮下的黑色素沉积引起的通过分析遗传(谱系和遗传标记)、环境(水质监测)和饲料成分(真菌毒素检测)等多种潜在原因,发现饲料中黄曲霉毒素B1(AFB1)严重超标伴随较高的L-2羟基苯丙氨酸(L-DOPA)(P<0.05)和黑色素含量(P<0.01)。因此推测过量的AFB1可能是导致小腿皮肤异常绿色的主要原因。

随后,进一步的结果表明,与正常的AFB1含量(<10μg kg-1)相比,高浓度的AFB1>170μg kg-1)确实诱导了小腿胫部的异常皮肤颜色与黑色素沉积相关的MC1REDN3基因显著上调(P<0.01),酪氨酸酶(TyR)的含量和活性显著增加(P<0.05)。同时,L-DOPA的含量和黑色素沉积也显著增加(P<0.01)。这也证实了过量AFB1对小腿皮肤黑色素沉积的影响。进一步的实验结果表明,AFB1对小腿皮肤黑色素沉积的负面影响可能会持续更长时间,不易消除。总之,本研究的结果解释了鸡小腿中异常AFB1相关青胫的发生及其可能机制。饲粮中过量的AFB1可能通过促进TyR含量和活性以及黑色素合成相关基因的表达,增加了鸡小腿中的L-DOPA含量和黑色素异常沉积。我们的研究结果有助于再次预警肉鸡生产中黄曲霉毒素B1危害



Abstract  

San-Huang chicken is a high-quality breed in China with yellow feather, claw and break.  However, the abnormal phenomenon of the yellow shank turning into green shank of San-Huang chicken has been a concern, as it seriously reduces the carcass quality and economic benefit of yellow-feathered broilers.  In this study, the cause of this abnormal green skin in shank was systematically investigated.  Physiological anatomy revealed that the abnormal skin in shank was primarily due to the deposition of melanin under the dermis.  After analyzing multiple potential causes such as heredity (pedigree and genetic markers), environment (water quality monitoring) and feed composition (mycotoxin detection), excessive aflatoxin B1 (AFB1) in feed was screened, accompanied with a higher L-dihydroxy-phenylalanine (L-DOPA) (P<0.05) and melanin content (P<0.01).  So it was speculated that excessive AFB1 might be the main cause of abnormal green skin in shank.  Subsequently, the further results showed that a high concentration of AFB1 (>170 μg kg–1) indeed induced the abnormal green skin in shank compared to the normal AFB1 content (<10 μg kg–1), and the mRNA levels of TYR, TYRP1, MITE, MC1R and EDN3 genes related to melanin deposition would significantly up-regulate (P<0.01) and the content and activity of tyrosinase (TyR) significantly increased (P<0.05).  At the same time, the content of L-DOPA and melanin deposition also increased significantly (P<0.01), which also confirmed the effect of excessive AFB1 on melanin deposition in skin of shank.  Results of additional experiments revealed that the AFB1’s negative effect on melanin deposition in skin of shank could last for a longer time.  Taken together, the results of this study explained the occurrence and possible mechanisms of the abnormal AFB1-related green skin in shank of chickens.  Excessive AFB1 in diets increased the L-DOPA content and melanin abnormal deposition in the chicken shank possibly via promoting TyR content and activity, and the expression of melanin synthesis-related genes.  Furthermore, our findings once again raised the alarm of the danger of AFB1 in the broiler production.

Keywords:  Aflatoxin B1       Melanin deposition        Skin color in shank        Chicken        Negative effect  
Received: 18 January 2022   Online: 15 April 2023   Accepted: 26 July 2022
Fund: This research was funded by the grants from the China Agriculture Research System of MOF and MARA (CARS-41) and the Agricultural Science and Technology Innovation Program, China (ASTIP-IAS04).
About author:  WANG Yong-li, E-mail: 13592578118@163.com; HUANG Chao, E-mail: 122769782@qq.com; YU Yang, E-mail: 799241490@qq.com; #Correspondence CUI Huan-xian, E-mail: cuihuanxian@caas.cn; ZHENG Mai-qing, E-mail: zhengmaiqing@caas.cn * These authors contributed equally to this study. *These authors have contributed equally to this work.

Cite this article: 

WANG Yong-li, HUANG Chao, YU Yang, CAI Ri-chun, SU Yong-chun, CHEN Zhi-wu, ZHENG Maiqing, CUI Huan-xian. 2023.

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes . Journal of Integrative Agriculture, 22(6): 1847-1856.

Adegbeye M J, Reddy P, Chilaka C A, Balogun O B, Salem A. 2020. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies - A review. Toxicon177, 96–108.

Alonso V A, Pereyra C M, Keller L A, Dalcero A M, Rosa C A, Chiacchiera S M, Cavaglieri L R. 2013. Fungi and mycotoxins in silage: An overview. Journal of Applied Microbiology115, 637–643.

Coulombe Jr R A. 1993. Biological action of mycotoxins. Journal of Dairy Science76, 880–891.

Dastager S G, Li W J, Dayanand A, Tang S K, Jiang X C L. 2006. Seperation, identification and analysis of pigment (melanin) production in StreptomycesAfrican Journal of Biotechnology5, 1131–1134.

Dohnal V, Wu Q, Ku A K. 2014. Metabolism of aflatoxins: Key enzymes and interindividual as well as interspecies differences. Archives of Toxicology88, 1635–1644.

Dorshorst B, Molin A M, Rubin C J, Johansson A M, Str Mstedt L, Pham M H, Chen C F, K F H, Shwell C A, Andersson L. 2011. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genetics7, 493.

Eaton D L, Groopman J D. 1994. The Toxicology of AflatoxinsHuman HealthVeterinaryand Agricultural Significance. Academic Press, San Diego, CA.

Eriksson J, Larson G, Gunnarsson U, Bed’Hom B, Tixier-Boichard M, Strömstedt L, Wright D, Jungerius A, Vereijken A, Randi E. 2008. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics4, e1000010.

Frases S, Salazar A, Dadachova E, Casadevall A. 2006. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Applied & Environmental Microbiology73, 615.

GB/T 14699.1-2005. 2005. Animal Feeding Stuffs - Sample. National Standard of the People’s Republic of China. (in Chinese)

GB/T 30955-2014. 2014. Determination of Aflatoxin B1, B2, G1, G2 Content in Feeds. National Standard of the People’s Republic of China. (in Chinese)

GB/T 5750.6-2006. 2006. Standard Test Methods for Drinking Water. National Standard of the People’s Republic of China. (in Chinese)

GB/T 5750.12-2006. 2006. Standard Test Methods for Drinking Water. National Standard of the People’s Republic of China. (in Chinese)

Huang J Q, Jiang H F, Zhou Y Q, Lei Y, Wang S Y, Liao B S. 2009. Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavusInternational Journal of Food Microbiology130, 17–21.

Jahanian E, Mahdavi A H, Asgary S, Jahanian R, Tajadini M H. 2019. Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Preventive Veterinary Medicine168, 9–18.

Komsky-Elbaz A, Saktsier M, Roth Z. 2018. Aflatoxin B1 impairs sperm quality and fertilization competence. Toxicology393, 42–50.

Lee J T, Jessen K A, Beltran R, Starkl V, Schatzmayr G, Borutova R, Caldwell D J. 2012. Effects of mycotoxin-contaminated diets and deactivating compound in laying hens: 2. Effects on white shell egg quality and characteristics. Poultry Science91, 2096.

Li D, Sun G, Zhang M, Cao Y, Kang X. 2020. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics21, 511.

Liu J B, Yan H L, Cao S C, Hu Y D, Zhang H F. 2019. Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin. Asian–Australasian Journal of Animal Sciences33, 294–304.

Mcgibbon W H. 1979. Green shanks and adult mortality in chickens. Journal of Heredity70, 44–46.

Mishra H N, Das C. 2003. A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition43, 245–264.

NY/T 33-2004. 2004. Feeding standard of chicken. National Standard of the People’s Republic of China. (in Chinese)

Pavan M E, López N I, Pettinari M J. 2020. Melanin biosynthesis in bacteria, regulation and production perspectives. Applied Microbiology and Biotechnology104, 1357–1370.

Pavan W J, Sturm R A. 2019. The genetics of human skin and hair pigmentation. Annual Review of Genomics and Human Genetics20, 41–72.

Perez-Vendrell A M, Hernandez J M, Llaurado L, Schierle J, Brufau J. 2001. Influence of source and ratio of xanthophyll pigments on broiler chicken pigmentation and performance. Poultry Science80, 320–326.

Rajput S A, Sun L, Zhang N, Khalil M M, Gao X, Ling Z, Zhu L, Khan F A, Zhang J, Qi D. 2017. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin B1. Toxins9, 371.

Reddy L, Odhav B, Bhoola K. 2006. Aflatoxin B1-induced toxicity in HepG2 cells inhibited by carotenoids: Morphology, apoptosis and DNA damage. Biological Chemistry14, 919–993.

Schaeffer J L, Tyczkowski J K, Riviere J E, Hamilton P B. 1988. Aflatoxin-impaired ability to accumulate oxycarotenoid pigments during restoration in young chickens. Poultry Science67, 619.

Smela M E, Currier S S, Bailey E A, Essigmann J M. 2001. The chemistry and biology of aflatoxin B-1: From mutational spectrometry to carcinogenesis. Carcinogenesis22, 535–545.

Taranu I, Marin D E, Palade M, Pistol G C, Chedea V S, Gras M A, Rotar C. 2019. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon162, 24–31.

Wang J S, Groopman J D. 1999. DNA damage by mycotoxins. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis424, 167–181.

Wu L, Guo X, Wang W, Medeiros D M, Clarke S L, Lucas E A, Smith B J, Lin D. 2016. Molecular aspects of β,β-carotene-9´,10´-oxygenase 2 in carotenoid metabolism and diseases. Experimental Biology & Medicine241, 1879.

Xu J, Lin S, Gao X, Nie Q, Zhang X. 2017. Mapping of Id locus for dermal shank melanin in a Chinese indigenous chicken breed. Journal of Genetics96, 977–983.

Yu W, Wang C, Xin Q, Li S, Feng Y, Peng X, Gong Y. 2013. Non-synonymous SNPs in MC1R gene are associated with the extended black variant in domestic ducks (Anas platyrhynchos). Animal Genetics44, 214–216.

Yu X, He X, Wang W, Feng Y, Chen H, Tian M, Liu D. 2018. Research progress on the effect of aflatoxin on poultry immunization. Agricultural Biotechnology7, 127–128.

Zaghini A, Martelli G, Roncada P, Simioli M, Rizzi L. 2005. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poultry Science84, 825–832.

Zhou Z, Li M, Cheng H, Fan W, Yuan Z, Gao Q, Xu Y, Guo Z, Zhang Y, Hu J. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications9, 535–545.

No related articles found!
No Suggested Reading articles found!