Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 246-260    DOI: 10.1016/j.jia.2023.06.017
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
The VGLL2 gene participates in muscle development in Gushi chickens

Wenya Li*, Haoxiang Ma*, Yanxing Wang, Yushi Zhang, Yang Liu, Ruili Han, Hong Li, Hanfang Cai, Xiaojun Liu, Xiangtao Kang, Ruirui Jiang#, Zhuanjian Li#

College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China

 Highlights 
● The addition or reduction of protein in chick feeding leads to the decline of growth rate.
VGLL2 plays a major role in the formation of muscle fibers during chicken embryonic stage.
● The overexpression of VGLL2 in skeletal muscle can promote the development of skeletal muscle in chicks.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

先前的研究表明,VGLL2是VGLL家族的一员,在动物骨骼肌的生长发育中发挥着重要作用,但其在鸡骨骼肌发育中的具体作用尚不清楚。本研究的主要目的是探讨VGLL2在鸡骨骼肌发育和鸡原代成肌细胞增殖分化中的生物学功能。在本研究中,我们通过CCK8、EdU和流式细胞术分析检测了VGLL2在过表达和干扰VGLL2后对成肌细胞增殖的影响,采用间接免疫荧光法IF检测VGLL2对成肌细胞分化的影响。qRT‒PCR和苏木精-伊红(H&E)染色用于评估VGLL2过表达对鸡骨骼肌生长速率和骨骼肌纤维特性的影响。结果表明,VGLL2抑制了鸡原代成肌细胞的增殖,但促进了这些细胞的分化。有趣的是,鸡骨骼肌纤维发育因VGLL2的过表达而显著增强。本研究首次从体内和体外对鸡VGLL2基因在骨骼肌中的作用进行了探究,并且数据表明VGLL2基因可能是改善家禽肌肉质量的有用标志物。本研究结果为家禽肌肉发育的研究提供了新的思路,对家禽生产具有一定的指导意义。同时,也为进一步完善我国地方鸡分子育种计划、建立我国地方鸡肌肉发育调控网络提供了理论依据。



Abstract  
Previous studies have shown that VGLL2, a member of the mammalian Vestigial-like (VGLL) family, plays important roles in the growth and development of animal skeletal muscle, but its specific role in the development of chicken skeletal muscle is unclear.  The main goal of this study was to explore the biological functions of VGLL2 in the development of chicken skeletal muscle and the proliferation and differentiation of skeletal muscle cells in vitro.  In this study, we detected the effect of VGLL2 on the proliferation of myoblasts by CCK8, EdU and flow cytometry analyses after overexpressing and interfering with VGLL2.  Indirect immunofluorescence was used to detect the effect of VGLL2 on the differentiation of myoblasts.  qRT-PCR and hematoxylin and eosin (H&E) staining were used to evaluate the effects of VGLL2 overexpression on the growth rate and muscle fiber structure of chicken skeletal muscle.  The results showed that VGLL2 inhibited the proliferation of primary cultured chicken myoblasts and promoted the differentiation of these cells.  Interestingly, food intake and muscle fiber development were significantly enhanced by the overexpression of VGLL2 in chickens.  Taken together, these data demonstrate that the VGLL2 gene may be a useful marker for improving muscle mass in poultry.
Keywords:  chicken        VGLL2        myoblast        proliferation        differentiation  
Received: 01 March 2023   Accepted: 27 April 2023
Fund: This work was supported by the National Natural Science Foundation of China-Henan Joint Grant (U1804107), the Zhongyuan Youth Talent Support Program, China (ZYYCYU202012156), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (22HASTIT038).
About author:  Wenya Li, E-mail: 18300667281@163.com; Haoxiang Ma, E-mail: Charles1569783411@163.com; #Correspondence Zhuanjian Li, E-mail: lizhuanjian@163.com; Ruirui Jiang, E-mail: Jrrcaas@163.com *These authors contributed equally to this study.

Cite this article: 

Wenya Li, Haoxiang Ma, Yanxing Wang, Yushi Zhang, Yang Liu, Ruili Han, Hong Li, Hanfang Cai, Xiaojun Liu, Xiangtao Kang, Ruirui Jiang, Zhuanjian Li. 2025. The VGLL2 gene participates in muscle development in Gushi chickens. Journal of Integrative Agriculture, 24(1): 246-260.

Alaggio R, Zhang L, Sung Y S, Huang S C, Chen C L, Bisogno G, Zin A, Agaram N P, LaQuaglia M P, Wexler L H, Antonescu C R. 2016. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. American Journal of Surgical Pathology40, 224–235.

Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A. 2022. Caspase-3: structure, function, and biotechnological aspects. Biotechnology and Applied Biochemistry69, 1633–1645.

Basu A, Haldar S. 1998. The relationship between BcI2Bax and p53: consequences for cell cycle progression and cell death. Molecular Human Reproduction, 12, 1099–1109.

Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold H H. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. The EMBO Journal8, 701–709.

Bridges C B, Morgan T H.1919. The Third Chromosome Group of Mutant Characters of Drosophila Melanogaster. Carnegie Institution of Washington, Washington, US. Vol. 327, pp. 93.

Cao Y, Kumar R M, Penn B H, Berkes C A, Kooperberg C, Boyer L A, Young R A, Tapscott S J. 2006. Global and gene-specific analyses show distinct roles for MyoD and MyoG at a common set of promoters. The EMBO Journal25, 502–511.

Chen B, You W, Wang Y. Shan T. 2020. The regulatory role of Myomaker and Myomixer–Myomerger–Minion in muscle development and regeneration. Cellular and Molecular Life Sciences77, 1551–1569.

Chen H H, Mullett S J, Stewart A F. 2004. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes. The Journal of Biological Chemistry279, 30800–30806.

Deng H, Hughes S C, Bell J B, Simmonds A J. 2009. Alternative requirements for Vestigial, Scalloped, and Dmef2 during muscle differentiation in Drosophila melanogasterMolecular Biology of the Cell20, 256–269.

Frontera W R, Ochala J. 2015. Skeletal muscle: A brief review of structure and function. Calcified Tissue International96, 183–195.

González-Magaña A, Blanco F. 2020. Human PCNA structure, function and interactions. Biomolecules10, 570.

Günther S, Michal M, Krüger M, Braun T. 2004. VITO-1 is an essential cofactor of TEF1-dependent muscle-specific gene regulation, Nucleic Acids Research32, 791–802.

Halder G, Carroll S B. 2001. Binding of the Vestigial co-factor switches the DNA-target selectivity of the Scalloped selector protein. Development128, 3295–3305.

Hasty P, Bradley A, Morris J H, Edmondson D G, Venuti J M, Olson E N, Klein W H. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the MyoD gene. Nature364, 501–506.

Heckmann B, Zhang X, Xie X, Liu J. 2013. The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond. Biochimica et Biophysica Acta1831, 276–281.

Honda M, Hidaka K, Fukada S I, Sugawa R, Shirai M, Ikawa M, Morisaki T. 2017. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Scientific Reports7, 7168.

Huang H, Zhong L, Liu L, Li C, Huang Z, Wang Q, Li S, Zhao Z. 2022. C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathwayJournal of Integrative Agriculture, 21, 496–503.

Kang X T, Tian Y D, Song S F. 2002. Energy and protein requirements for 0-to 4-week-age Gushi chicks. Agricultural Sciences in China1, 1271–1276.

Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. 2007. Clustal W and Clustal X version 20. Bioinformatics23, 2947–2948.

Li T, Wu R, Zhang Y, Zhu D. 2011. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics12, 186.

Li W, Jing Z, Cheng Y, Wang X, Li D, Han R, Li W, Li G, Sun G, Tian Y, Liu X, Kang X, Li Z. 2020. Analysis of four complete linkage sequence variants within a novel lncRNA located in a growth QTL on chromosome 1 related to growth traits in chickens. Journal of Animal Science98, 1–11.

Li W, Liu D, Tang S, Li D, Han R, Tian Y, Li H, Li G, Li W, Liu X, Kang X, Li Z. 2019. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens. Poultry Science98, 556–565.

Liu L, Liu H, Ning L, Li F. 2019. Rabbit SLC15A1SLC7A1 and SLC1A1 genes are affected by site of digestion, stage of development and dietary protein content. Animal13, 326–332.

Liu X, Wang J, Li R, Yang X, Sun Q, Albrecht E, Zhao R. 2011. Maternal dietary protein affects transcriptional regulation of Myostatin gene distinctively at weaning and finishing stages in skeletal muscle of Meishan pigs. Epigenetics6, 899–907.

Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, Lawal R A, Nie Q, Zhang X, Hanotte O. 2019. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death and Differentiation26, 426–442.

Maeda T, Chapman D L, Stewart A F. 2002. Mammalian Vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. The Journal of Biological Chemistry277, 48889–48898.

Mansilla S, Vega M, Calzetta N, Siri S, Gottifredi V. 2020. CDK-independent and PCNA-dependent functions of P21 in DNA replication. Genes11, 593.

Massuquetto A, Panisson J C, Schramm V G, Surek D, Krabbe E L, Maiorka A. 2020. Effects of feed form and energy levels on growth performance, carcass yield and nutrient digestibility in broilers. Animal14, 1139–1146.

Mielcarek M, Günther S, Krüger M, Braun T. 2002. VITO-1, a novel vestigial related protein is predominantly expressed in the skeletal muscle lineage. Gene Expression Patterns2, 305–310.

Nabeshima Y, Hanaoka M, Hayasaka M, Esumi E, Li S, Nonaka I. 1993. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature364, 532–535.

Nakopoulou L, Stefanaki K, Salpigidis K, Boletis J, Papadakis J, Zeiss P M, Vosnides, G. 1997. The value of proliferating cell nuclear antigen (PCNA)/cyclin in the assessment of cell proliferation in glomerulonephritis. Histology and Histopathology12, 655–662.

O’Neill M C. 1987. Growth and differentiation during Myogenesis in the chick embryo. Developmental Biology120, 465–480.

Ren T, Zhou Y, Zhou Y, Tian W, Gu Z, Zhao S, Chen Y, Han R, Liu X, Kang X, Li Z. 2017. Identification and association of novel lncRNA pouMU1 gene mutations with chicken performance traits. Journal of Genetics96, 941–950.

Rudnicki M, Grand L, McKinnell F, Kuang S. 2008. The molecular regulation of muscle stem cell function. Cold Spring Harbor Symposia on Quantitative Biology73, 323–331.

Russell L, Forsdyke D. 1991. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated. DNA and Cell Biology10, 581–591.

Shan Y, Ji G, Zhang M, Liu Y, Tu Y, Ju X, Shu J, Zou J. 2022. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts, Journal of Integrative Agriculture22, 1159–1171.

Sobolewska A, Elminowska-Wenda G, Bogucka J, Szpinda M, Walasik K, Bednarczyk M, Paruszewska-Achtel M. 2011. Myogenesis - possibilities of its stimulation in chickens. Folia Biologica-Krakow59, 85–90.

Tahmoorespur M, Ghazanfari S, Nobari K. 2010. Evaluation of adiponectin gene expression in the abdominal adipose tissue of broiler chickens: feed restriction, dietary energy, and protein influences adiponectin messenger ribonucleic acid expression. Poultry Science89, 2092–2100.

Vaudin P, Delanoue R, Davidson I, Silber J, Zider A. 1999. TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development126, 4807–4816.

Velleman S G. 2007. Muscle development in the embryo and hatchling. Poultry Science86, 1050–1054.

Wei Y, Zhao X, Shen X, Ye L, Zhang Y, Wang Y, Li D, Zhu Q, Yin H. 2022. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development. Journal of Integrative Agriculture, 21, 1444–1456.

Yin H, Price F, Rudnicki M. 2013. Satellite cells and the muscle stem cell niche. Physiological Reviews93, 23–67.

Zhang H, Wen J, Bigot A, Chen J, Bi P. 2020. Human myotube formation is determined by MyoDMyomixer/Myomaker axis. Science Advances6, eabc4062.

Zinkel S, Gross A, Yang E. 2006. BCL2 family in DNA damage and cell cycle control. Cell Death and Differentiation13, 1351–1359.

[1] Yuanmei Wang, Jingwei Yuan, Yanyan Sun, Aixin Ni, Jinmeng Zhao, Yunlei Li, Panlin Wang, Lei Shi, Yunhe Zong, Pingzhuang Ge, Shixiong Bian, Hui Ma, Jilan Chen. Genome-wide circular RNAs signatures involved in sexual maturation and its heterosis in chicken[J]. >Journal of Integrative Agriculture, 2025, 24(2): 697-711.
[2] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[3] Lei Shi, Yanyan Sun, Yunlei Li, Hao Bai, Jingwei Yuan, Hui Ma, Yuanmei Wang, Panlin Wang, Aixin Ni, Linlin Jiang, Pingzhuang Ge, Shixiong Bian, Yunhe Zong, Jinmeng Zhao, Adamu M. Isa, Hailai H. Tesfay, Jilan Chen. Asymmetric expression of CA2 and CA13 linked to calcification in the bilateral mandibular condyles cause crossed beaks in chickens[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2379-2390.
[4] Shengjie Shi, Lutong Zhang, Liguang Wang, Huan Yuan, Haowei Sun, Mielie Madaniyati, Chuanjiang Cai, Weijun Pang, Lei Gao, Guiyan Chu.

miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27 [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1315-1328.

[5] Dan Chu, Bin Chen, Bo Weng, Saina Yan, Yanfei Yin, Xiangwei Tang, Maoliang Ran. Long non-coding RNA FPFSC promotes immature porcine Sertoli cell growth through modulating the miR-326/EHMT2 axis[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3830-3842.
[6] ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping. Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3744-3754.
[7] ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui. Identification of transition factors in myotube formation from proteome and transcriptome analyses[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3135-3147.
[8] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
[9] Hong Quyen Dang, XU Gu-li, HOU Lian-jie, XU Jian, HONG Guang-liang, Chingyuan Hu, WANG Chong. MicroRNA-22 inhibits proliferation and promotes differentiation of satellite cells in porcine skeletal muscle[J]. >Journal of Integrative Agriculture, 2020, 19(1): 225-233.
[10] WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin.
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1924-1935.
No Suggested Reading articles found!