Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3843-3859    DOI: 10.1016/j.jia.2023.11.006
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Retinol is involved in the intestinal regeneration and strengthens the intestinal barrier during refeeding in broiler chickens

Youli Wang1, Huajin Zhou2, Jing Chen3, Yuqin Wu2, Yuming Guo2, Bo Wang2, Jianmin Yuan2#

1 Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Key Laboratory of Sichuan Province for Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China

2 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

3 Sichuan New Hope Liuhe Technology Innovation Co. Ltd., Chengdu 610100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

肉仔鸡饲料代谢能之前,通常会采用禁食的方法排空胃肠道。我们以往的研究发现禁食提高饲料代谢能值和养分消化率。目的:禁食是否会通过改变肠道屏障功能而影响肠道通透性,进而影响营养物质的吸收是一个值得关注的问题。方法:本研究中,我们将 23 日龄的肉仔鸡随机分配到 5 个处理中,分别禁食 0122436 48 小时,然后再恢复采食 2 天,来研究禁食对肠道屏障的影响。结果:研究发现在恢复采食2 d后禁食对肠绒毛的损伤基本恢复。随着禁食时间的延长,肠绒毛上的肠细胞呈线性和二次曲线增多(P < 0.05),而每个肠绒毛上的杯状细胞呈线性下降(P < 0.05)。此外,恢复采食期间,溶菌酶(lysozyme)的 mRNA 水平随着禁食时间的延长呈线性下降(P <0.05),而粘蛋白 2mucin2)仅在恢复采食 1 d 时呈二次曲线增长(P <0.05)。恢复采食 1 d 后,闭合蛋白2claudin 2)和 闭锁小带1zonula occludens-1)的表达随禁食时间延长而增加(P < 0.05),而恢复采食 2 d 后,闭合蛋白2与禁食时间呈线性和二次曲线效应(P < 0.05)。此外,随着禁食时间的延长,肠道对肌酐、4 kDa 70 kDa 右旋糖酐的通透性呈线性和二次曲线下降(P < 0.05)。此外,对禁食 6 小时的肉仔鸡空肠进行蛋白质组学分析发现,与自由采食肉仔鸡相比,禁食 36 小时的肉鸡体内抗菌肽水平升高,视黄醇代谢增强(P < 0.05)。进一步的研究表明,视黄醇酯的分解代谢在禁食期间受到抑制,而在恢复采食期间得到增强。鸡肠道类器官培养结果显示,视黄醇有利于细胞增殖和小肠干细胞向吸收型细胞肠细胞的分化。结论:禁食通过增强肠道屏障功能降低了恢复采食期间小肠上皮细胞对小分子和大分子物质的通透性,而恢复采食期间激活的视黄醇代谢促进肠细胞的分化,进而增强小肠上皮细胞通过跨膜转运吸收养分的途径。创新:本研究采用蛋白质组学以及小肠类器官模型等新技术研究传统营养,发现禁食通过增强小肠上皮细胞的跨膜转运吸收途径来提高饲料代谢能值,导致饲料代谢能值被高估,这一结果为饲料营养价值评定提供一定参考。



Abstract  

Fasting is typically used before feeding metabolizable energy assessment in broilers.  Previous studies have shown that fasting cause atrophy of the intestinal villus.  Whether fasting affects intestinal permeability during refeeding by altering barrier function and nutrient absorption is of concern.  Here, 23-d-old broilers were randomly assigned to 5 treatments, fasted for 0, 12, 24, 36, and 48 h, respectively, and then refed for 2 d, to study the impact of different duration of fasting on the intestinal regeneration and barrier function during refeeding.  Results showed that the intestinal morphology in fasted birds was recovered in 2 d of refeeding at most.  As fasting durations increased, enterocytes per intestinal villus were linearly and quadratically increased (both P<0.05), whereas goblet cells per intestinal villus was linearly decreased (both P<0.05).  Besides, the mRNA level of lysozyme was linearly decreased as fasting durations increased during refeeding (both P<0.05), while quadratically increased mucin 2 was observed only after 1 d of refeeding (P<0.05).  Linear increase effects were observed for claudin 2 and zonula occludens-1 with increased fasting durations after 1 d of refeeding (all P<0.05), and linear and quadratical effects were observed for claudin 2 at 2 d of refeeding (both P<0.05).  Besides, we found that intestinal permeability to creatinine, 4 and 70 kD dextran were linearly and quadratically decreased with increased fasting durations at 6 h and 1 d of refeeding (all P<0.05).  Furthermore, jejunum proteomic from birds refed for 6 h showed that birds fasted for 36 h showed increased antimicrobial peptides and upregulated retinol metabolism when compared to the nonfasted birds (P<0.05).  Further study showed that retinyl ester catabolism was inhibited during fasting and enhanced during refeeding.  Results of intestinal organoid culture showed that retinol benefits the cell proliferation and enterocyte differentiation.  In conclusion, the intestinal permeability to small and large molecules was decreased during refeeding by strengthening the intestinal barrier function, and the activated retinol metabolism during refeeding is involved in the intestinal regeneration and strengthens the intestinal barrier. 

Keywords:  broiler chicken       fasting        intestinal barrier        intestinal permeability        retinol  
Received: 24 March 2023   Accepted: 11 September 2023
Fund: 
This work was supported by the funding of the National Natural Science Foundation of China (32072752) and the Southwest Minzu University Double World-Class Project, China (XM2023011).
About author:  Youli Wang, E-mail: wangylwy@163.com; #Correspondance Jianmin Yuan, Tel: +86-10-62732337, E-mail: yuanjm@cau.edu.cn

Cite this article: 

Youli Wang, Huajin Zhou, Jing Chen, Yuqin Wu, Yuming Guo, Bo Wang, Jianmin Yuan. 2024. Retinol is involved in the intestinal regeneration and strengthens the intestinal barrier during refeeding in broiler chickens. Journal of Integrative Agriculture, 23(11): 3843-3859.

Aardsma M P, Mitchell R D, Parsons C M. 2017. Relative metabolizable energy values for fats and oils in young broilers and adult roosters. Poultry Science96, 2320–2329.

Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology300, G1054–G1064.

Anderson J M, Van Itallie C M. 2009. Physiology and function of the tight junction. Cold Spring Harbor Perspectives in Biology1, a2584.

AOAC (Association of Official Analytical Chemists). 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Arlington, VA.

Bai S, Pan S, Zhang K, Ding X, Wang J, Zeng Q, Xuan Y, Su Z. 2017. Dietary overload lithium decreases the adipogenesis in abdominal adipose tissue of broiler chickens. Environmental Toxicology and Pharmacology49, 163–171.

Basson M D, Wang Q, Chaturvedi L S, More S, Vomhof-Dekrey E E, Al-Marsoummi S, Sun K, Kuhn L A, Kovalenko P, Kiupel M. 2018. Schlafen 12 interaction with serpinb12 and deubiquitylases drives human enterocyte differentiation. Cellular Physiology and Biochemistry48, 1274–1290.

Bozzi A T, Nolan E M. 2020. Avian mrp126 restricts microbial growth through Ca (ii)-dependent Zn (ii) sequestration. Biochemistry59, 802–817.

Dan Q, Shi Y, Rabani R, Venugopal S, Xiao J, Anwer S, Ding M, Speight P, Pan W, Alexander R T, Kapus A, Szászi K. 2019. Claudin-2 suppresses gef-h1, rhoa, and mrtf, thereby impacting proliferation and profibrotic phenotype of tubular cells. Journal of Biological Chemistry294, 15446–15465.

Davis S R, Mcmahon R J, Cousins R J. 1998. Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. Journal of Nutrition128, 825–831.

Dhawan P, Ahmad R, Chaturvedi R, Smith J J, Midha R, Mittal M K, Krishnan M, Chen X, Eschrich S, Yeatman T J, Harris R C, Washington M K, Wilson K T, Beauchamp R D, Singh A B. 2011. Claudin-2 expression increases tumorigenicity of colon cancer cells: Role of epidermal growth factor receptor activation. Oncogene30, 3234–3247.

Eckmann L. 2005. Defence molecules in intestinal innate immunity against bacterial infections. Current Opinion in Gastroenterology21, 147–151.

Evans E W, Beach F G, Moore K M, Jackwood M W, Glisson J R, Harmon B G. 1995. Antimicrobial activity of chicken and turkey heterophil peptides chp1, chp2, thp1, and thp3. Veterinary Microbiology47, 295–303.

Gehart H, Clevers H. 2019. Tales from the crypt: New insights into intestinal stem cells. Nature Reviews Gastroenterology & Hepatology16, 19–34.

Gilani S, Howarth G S, Kitessa S M, Tran C D, Forder R E A, Hughes R J. 2017. New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens. Journal of Animal Physiology and Animal Nutrition101, e237–e245.

Hakim A H, Zulkifli I, Soleimani Farjam A, Awad E A, Abdullah N, Chen W L, Mohamad R. 2020. Passage time, apparent metabolisable energy and ileal amino acids digestibility of treated palm kernel cake in broilers under the hot and humid tropical climate. Italian Journal of Animal Science19, 194–202.

Hartsock A, Nelson W J. 2008. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta (BBA) (Biomembranes), 1778, 660–669.

Harwig S S L, Swiderek K M, Kokryakov V N, Tan L, Lee T D, Panyutich E A, Aleshina G M, Shamova O V, Lehrer R I. 1994. Gallinacins: Cysteine-rich antimicrobial peptides of chicken leukocytes. Febs Letters342, 281–285.

He C, Deng J, Hu X, Zhou S, Wu J, Xiao D, Darko K O, Huang Y, Tao T, Peng M. Wang Z, Yang X. 2019. Vitamin A inhibits the action of LPS on the intestinal epithelial barrier function and tight junction proteins. Food Function10, 1235–1242.

Ho J, Chan H, Liang Y, Liu X, Zhang L, Li Q, Zhang Y, Zeng J, Ugwu F N, Ho I, Hu W, Yau J, Wong S H, Wong W T, Ling L, Cho C H, Gallo R L, Gin T, Tse G, Yu J, et al. 2020. Cathelicidin preserves intestinal barrier function in polymicrobial sepsis. Critical Care24, 47.

Van Itallie C M. 2004. The role of claudins in determining paracellular charge selectivity. Proceedings of the American Thoracic Society1, 38–41.

Jia Z, Bao K, Wei P, Yu X, Zhang Y, Wang X, Wang X, Yao L, Li L, Wu P, Yuan W, Wang S, Zheng J, Hua Y, Hong M. 2021. Egfr activation-induced decreases in claudin1 promote muc5ac expression and exacerbate asthma in mice. Mucosal Immunology14, 125–134.

Kim E J, Utterback P L, Parsons C M. 2011. Development of a precision-fed ileal amino acid digestibility assay using 3-week-old broiler chicks. Poultry Science90, 396–401.

Kwak S Y, Jang W I, Park S, Cho S S, Lee S B, Kim M, Park S, Shim S, Jang H. 2021. Metallothionein 2 activation by pravastatin reinforces epithelial integrity and ameliorates radiation-induced enteropathy. Ebiomedicine73, 103641.

Li Y, Luo Z, Wu X, Zhu J, Yu K, Jin Y, Zhang Z, Zhao S, Zhou L. 2017. Proteomic analyses of cysteine redox in high-fat-fed and fasted mouse livers: Implications for liver metabolic homeostasis. Journal of Proteome Research17, 129−140.

Liu J, Teng P, Kim W K, Applegate T J. 2021. Assay considerations for fluorescein isothiocyanate-dextran (FITC-d): An indicator of intestinal permeability in broiler chickens. Poultry Science100, 101202.

Lukonin I, Serra D, Challet Meylan L, Volkmann K, Baaten J, Zhao R, Meeusen S, Colman K, Maurer F, Stadler M B, Jenkins J, Liberali P. 2020. Phenotypic landscape of intestinal organoid regeneration. Nature586, 275–280.

Matsumoto T, Mochizuki W, Nibe Y, Akiyama S, Matsumoto Y, Nozaki K, Fukuda M, Hayashi A, Mizutani T, Oshima S, Watanabe M, Nakamura T. 2016. Retinol promotes in vitro growth of proximal colon organoids through a retinoic acid-independent mechanism. PLoS ONE11, e162049.

De Medina F S, Romero-Calvo I, Mascaraque C, Martínez-Augustin O. 2014. Intestinal inflammation and mucosal barrier function. Inflammatory Bowel Diseases20, 2394–2404.

Mihaylova M M, Cheng C, Cao A Q, Tripathi S, Mana M D, Bauer-Rowe K E, Abu-Remaileh M, Clavain L, Erdemir A, Lewis C A, Freinkman E, Dickey A S, La Spada A R, Huang Y, Bell G W, Deshpande V, Carmeliet P, Katajisto P, Sabatini D M, Yilmaz Ö H. 2018. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell22, 769–778.

Mountzouris K C, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K. 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science89, 58–67.

O’Byrne S M, Blaner W S. 2013. Retinol and retinyl esters: Biochemistry and physiology. Journal of Lipid Research54, 1731–1743.

Pope J L, Bhat A A, Sharma A, Ahmad R, Krishnan M, Washington M K, Beauchamp R D, Singh A B, Dhawan P. 2014. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of notch-signalling. Gut63, 622–634.

Richmond C A, Shah M S, Deary L T, Trotier D C, Thomas H, Ambruzs D M, Jiang L, Whiles B B, Rickner H D, Montgomery R K, Tovaglieri A, Carlone D L, Breault D T. 2015. Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Reports13, 2403–2411.

Rosenthal R, Günzel D, Krug S M, Schulzke J D, Fromm M, Yu A S L. 2017. Claudin-2-mediated cation and water transport share a common pore. Acta Physiologica219, 521–536.

Ross A C. 2003. Retinoid production and catabolism: Role of diet in regulating retinol esterification and retinoic acid oxidation. Journal of Nutrition133, 291S–296S.

De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. 2015. Nutritional keys for intestinal barrier modulation. Frontiers in Immunology6, 612.

Smirnov A, Sklan D, Uni Z. 2004. Mucin dynamics in the chick small intestine are altered by starvation. Journal of Nutrition134, 736–742.

Song J, Wolf S E, Wu X, Finnerty C C, Gauglitz G G, Herndon D N, Jeschke M G. 2009. Starvation-induced proximal gut mucosal atrophy diminished with aging. Journal of Parenteral and Enteral Nutrition33, 411–416.

Takahashi Y, Moiseyev G, Ma J. 2014. Identification of key residues determining isomerohydrolase activity of human rpe65. Journal of Biological Chemistry289, 26743–26751.

Thompson K L, Applegate T J. 2006. Feed withdrawal alters small-intestinal morphology and mucus of broilers. Poultry Science85, 1535–1540.

Tsai P, Zhang B, He W, Zha J, Odenwald M A, Singh G, Tamura A, Shen L, Sailer A, Yeruva S, Kuo W, Fu Y, Tsukita S, Turner J R. 2017. Il-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host & Microbe21, 671–681.

Turner J R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology9, 799–809.

Vicuna E A, Kuttappan V A, Tellez G, Hernandez-Velasco X, Seeber-Galarza R, Latorre J D, Faulkner O B, Wolfenden A D, Hargis B M, Bielke L R. 2015. Dose titration of FITC-D for optimal measurement of enteric inflammation in broiler chicks. Poultry Science94, 1353–1359.

Wang Y, Hou Q, Wu Y, Xu Y, Liu Y, Chen J, Xu L, Guo Y, Gao S, Yuan J. 2022a. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development. Animal Nutrition8, 38–51.

Wang Y, Wu Y, Chen J, Guo X, Yan L, Guo Y, Wang B, Yuan J. 2021. The duration of food withdrawal affects the intestinal structure, nutrients absorption, and utilization in broiler chicken. The FASEB Journal35, e21178 .

Wang Y, Wu Y, Mahmood T, Chen J, Yuan J. 2022b. Age-dependent response to fasting during assessment of metabolizable energy and total tract digestibility in chicken. Poultry Science101, 101932.

Yamauchi K, Kamisoyama H, Isshiki Y. 1996. Effects of fasting and refeeding on structures of the intestinal villi and epithelial cells in white leghorn hens. British Poultry Science37, 909–921.

[1] ZHANG Shao-shuai, SU Hong-guang, ZHOU Ying, LI Xiu-mei, FENG Jing-hai, ZHANG Min-hong. Effects of sustained cold and heat stress on energy intake, growth and mitochondrial function of broiler chickens[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2336-2342.
[2] CHEN Juan, MA Hai-tian, WANG Man, KONG Yi-li , ZOU Si-xiang. Creatine Pyruvate Enhances Lipolysis and Protein Synthesis in Broiler Chicken[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1977-1985.
No Suggested Reading articles found!