Special Issue:
麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
|
|
|
Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments |
LIU Hang1*, TANG Hua-ping1*, LUO Wei1, MU Yang1, JIANG Qian-tao1, LIU Ya-xi1, CHEN Guo-yue1, WANG Ji-rui1, ZHENG Zhi2, QI Peng-fei1, JIANG Yun-feng1, CUI Fa3, SONG Yin-ming4, YAN Gui-jun5, WEI Yu-ming1, LAN Xiu-jin1, ZHENG You-liang1, MA Jian1 |
1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology/Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Agriculture and Food, CSIRO, St Lucia, Brisbane 4217, Australia
3 College of Agriculture, Ludong University, Yantai 264000, P.R.China
4 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100093, P.R.China
5 School of Plant Biology, The University of Western Australia, Perth WA 6009, Australia |
|
|
摘要
下节间直径(UID)是与小麦穗部发育和丰产性相关的重要形态性状。而我们对其遗传基础的了解知之甚少。本文在5个小麦重组自交系(RIL)群体中利用高密度遗传图谱鉴定了控制UID的数量性状位点(QTL)。在5个RIL群体中共检测到25个UID QTL,分别位于1A、1D(3个QTL)、2B(2)、2D(3)、3B、3D、4A、4B(3)、4D、5A(5)、5B(2)、6B、7D染色体上。其中,5个主效且稳定的QTL:QUid.sau-2CN-1D.1、QUid.sau-2SY-1D、QUid.sau-QZ-2D、QUid.sau-SC-3D和QUid.sau-AS-4B分别在5个RIL群体的多个环境中检测到。QUid.sau-2CN-1D、QUid.sau-2SY-1D与QUid.sau-SC-3D 为三个新的UID 位点。我们进一步开发了与主效QTL紧密连锁的竞争性等位基因特异性PCR(KASP)标记,用于构建近等基因系(NILs)。此外,我们还在主效QTL的物理区间内预测了候选基因,这些候选基因大多与植物发育和水分运输有关。以中国春为参考基因组,我们对定位到的主效QTL的物理区间进行了比较,结果表明,QUid.sau-2CN-1D.1和QUid.sau-2SY-1D可能是等位基因,进一步证实了它们的真实性和有效性。本文也对UID与其他农艺性状的相关关系及UID的大小进行了讨论。总体而言,我们的研究结果剖析了小麦UID的潜在遗传基础,为这些QTL的进一步精细定位和图位克隆奠定了基础。
Abstract Uppermost-internode diameter (UID) is a key morphological trait associated with spike development and yield potential in wheat. Our understanding of its genetic basis remains largely unknown. Here, quantitative trait loci (QTLs) for UID with high-density genetic maps were identified in five wheat recombinant inbred line (RIL) populations. In total, 25 QTLs for UID were detected in five RIL populations, and they were located on chromosomes 1A, 1D (3 QTL), 2B (2), 2D (3), 3B, 3D, 4A, 4B (3), 4D, 5A (5), 5B (2), 6B, and 7D. Of them, five major and stable QTLs (QUid.sau-2CN-1D.1, QUid.sau-2SY-1D, QUid.sau-QZ-2D, QUid.sau-SC-3D, and QUid.sau-AS-4B) were identified from each of the five RIL populations in multiple environments. QUid.sau-2CN-1D.1, QUid.sau-2SY-1D and QUid.sau-SC-3D are novel QTLs. Kompetitive Allele Specific PCR (KASP) markers tightly linked to them were further investigated for developing near-isogenic lines (NILs) carrying the major loci. Furthermore, candidate genes at these intervals harboring major and stable QTLs were predicted, and they were associated with plant development and water transportation in most cases. Comparison of physical locations of the identified QTL on the ‘Chinese Spring’ reference genome showed that several QTLs including two major ones, QUid.sau-2CN-1D.1 and QUid.sau-2SY-1D, are likely allelic confirming their validity and effectiveness. The significant relationships detected between UID and other agronomic traits and a proper UID were discussed. Collectively, our results dissected the underlying genetic basis for UID in wheat and laid a foundation for further fine mapping and map-based cloning of these QTLs.
|
Received: 04 June 2020
Accepted:
|
Fund: This work was supported by the projects from the National Natural Science Foundation of China (31971937 and 31970243), the Key Projects of Scientific and Technological Activities for Overseas Students of Sichuan Province, China and the Applied Basic Research Programs of Science and Technology Department of Sichuan Province, China (2020YJ0140). |
Corresponding Authors:
Correspondence MA Jian, Tel: +86-28-86293115, Fax: +86-28-82650350, E-mail: jianma@sicau.edu.cn
|
About author:
* These authors contributed equally to this study. |
Cite this article:
LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian.
2021.
Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments. Journal of Integrative Agriculture, 20(11): 2849-2861.
|
Avni R, Nave M, Barad O, Baruch K, Twardziok S O, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97.
Berry P M, Berry S T. 2015. Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica, 205, 1–19.
Cui F, Li J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S, Bao Y G, Li X F, Feng D S. 2011. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 122, 1517–1536.
Deng M, Wu F Q, Zhou W L, Li J, Shi H R, Wang Z Q, Lin Y, Yang X L, Wei Y M, Zheng Y L, Liu Y X. 2019. Mapping of QTL for total spikelet number per spike on chromosome 2D in wheat using a high-density genetic map. Genetics and Molecular Biology, 42, 603–610.
Goddard M E. 1992. A mixed model for analyses of data on multiple genetic markers.Theoretical and Applied Genetics, 83, 878–886.
Huang H. 1998. Relation between the tissue of the highest internode and the number of spikelets. Acta Agronomica Sinica, 24, 200–202. (in Chinese)
IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome by the international wheat genome sequencing consortium. Science, 361, eaar7191.
Jiang Y F, Lan X J, Luo W, Kong X C, Qi P F, Wang J R, Wei Y M, Jiang Q T, Liu Y X, Peng Y Y. 2014. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PLoS ONE, 9, e114066.
Kaldenhoff R, Ribascarbo M, Sans J F, Lovisolo C, Heckwolf M, Uehlein N. 2008. Aquaporins and plant water balance. Plant Cell and Environment, 31, 658–666.
Li C, Ma J, Liu H, Ding P Y, Yang C C, Zhang H, Qin N N, Lan X J. 2019. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 39, 4. (in Chinese)
Lin H, Guo H J, Xiao S H, Jiang G L, Zhang X Y, Yan C S, Xin Z Y, Jia J Z. 2005. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica, 141, 1–9.
Lin H, Qian H, Zhuang J, Lu J, Min S, Xiong Z, Huang N, Zheng K. 1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theoretical and Applied Genetics, 92, 920–927.
Liu G L, Mei H W, Yu X Q, Zou G H, Liu H Y, Hu S P, Li M S, Wu J H, Chen L, Luo L J. 2008. QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Science, 174, 71–77.
Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. 2018. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 131, 2439–2450.
Liu J J, Tang H P, Qu X R, Liu H, Li C, Tu Y, Li S Q, Ahsan Habib, Mu Y, Dai S F, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Chen G D, Li W, Jiang Y F, Wei Y M, Lan X J, et al. 2020. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Molecular Biology, 104, 173–185.
Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. 2018. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131, 839–849.
Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N X, Zhu T T, Wang L, Wang Y. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498.
Luo W, Ma J, Zhou X H, Jiang Y F, Sun M, Yang Y J, Kong X C, Qi P F, Jiang Q T, Liu Y X, Peng Y Y, Chen G Y, Wei Y M, Zheng Y L, Lan X J. 2016a. Genetic analysis of glume hairiness (Hg) gene in bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 63, 763–769.
Luo W, Ma J, Zhou X H, Sun M, Kong X C, Wei Y M, Jiang Y F, Qi P F, Jiang Q T, Liu Y X, Peng Y Y, Chen G Y, Zheng Y L, Liu C J, Lan X J. 2016b. Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semiwild wheat (Triticum aestivum ssp. tibetanum). Crop Science, 56, 2410–2420.
Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. 2019a. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theoretical and Applied Genetics, 132, 3155–3167.
Ma J, Qin N N, Cai B, Chen G Y, Ding P Y, Zhang H, Yang C C, Huang L, Mu Y, Tang H P, Liu Y X, Wang J R, Qi P F, Jiang Q T, Zheng Y L, Liu C J, Lan X J, Wei Y. 2019b. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 132, 1363–1373.
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Ahsan H, Mu Y, Tang H P, Liu C J, Jiang Q T, Chen G D, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, et al. 2019c. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 133, 297–315.
Ma J, Yan G J, Liu C J. 2012. Development of near-isogenic lines for a major QTL on 3BL conferring Fusarium crown rot resistance in hexaploid wheat. Euphytica, 183, 147–152.
Morita M T, Sakaguchi K, Kiyose S I, Taira K, Kato T, Nakamura M, Tasaka M. 2006. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. The Plant Journal, 47, 619–628.
Pan X Y, Miao F. 2005. Survey of wheat microtubule tissue structure. Chinese Agricultural Science Bulletin, 9, 121–123. (in Chinese)
Piepho H P, Möhring J, Melchinger A E, Büchse A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161, 209–228.
Qiao Y L, Piao R H, Shi J X, Lee S I, Jiang W Z, Kim B K, Lee J, Han L Z, Ma W B, Koh H J. 2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 122, 1439–1449.
Qiu Z F, Fang C, Chen H J. 1987. On the vascular tissue of wheat internodal and its relationship to the grain number per spike. Acta Agronomica Sinica, 2, 102–102. (in Chinese)
Rahaie M, Xue G P, Naghavi M R, Alizadeh H, Schenk P M. 2010. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Reports, 29, 835–844.
Ratcliffe O J, Riechmann J L. 2002. Arabidopsis transcription factors and the regulation of flowering time: A genomic perspective. Current Issues in Molecular Biology, 4, 77–92.
Sallam A, Hashad M, Hamed E S, Omara M. 2015. Genetic variation of stem characters in wheat and their relation to kernel weight under drought and heat stresses. Journal of Crop Science and Biotechnology, 18, 137–146.
Sang Y, Zhao L, Zhang K P, Tian J C, Ye B X. 2010. Mapping QTLs for uppermost internode diameter and thickness and area of culm wall with doubled-haploid population in wheat. Acta Agronomica Sinica, 36, 61–67. (in Chinese)
Shen H B, Yang D L, Jing R L, Chang X P, Qu Y Y. 2007. Genetic characters of vascular bundle in the first internode and its relationship with yield components of wheat. Journal of Triticeae Crops, 27, 465–470. (in Chinese)
Simonneau T, Habib R, Goutouly J P, Huguet J G. 1993. Diurnal changes in stem diameter depend upon variations in water content: Direct evidence in peach trees. Journal of Experimental Botan, 44, 615–621.
Smith S E, Kuehl R O, Ray I M, Hui R, Soleri D. 1998. Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Science, 38, 1125–1129.
Tian J C, Deng Z Y, Zhang K P, Yu H X, Jiang X L, Li C. 2015. Genetic analysis of main physiological and morphological traits. In: Genetic Analyses of Wheat and Molecular Marker-Assisted Breeding. vol. 1. Springer. pp. 351–443.
Wiarda S L. 2015. Effect of the tiller inhibition (tin) genein winter wheat. Ph D thesis, Purdue University, USA.
Xie Q G. 2011. QTL mapping of lodging related traits in wheat. MSc thesis, Shandong Agricultural University, China. (in Chinese)
Xu X W. 2019. QTL mapping of wheat growth and development and stem related traits. MSc thesis, Northwest A&F University, China. (in Chinese)
Yang J. 2016. QTL mapping for pre-harvest sprouting resistance and molecular characterization of six grain germination-related genes in synthetic wheat. Ph D thesis, Sichuan Agricultural University, China. (in Chinese)
Yu M, Chen G Y, Pu Z E, Zhang L Q, Liu D C, Lan X J, Wei Y M, Zheng Y L. 2015. Quantitative trait locus mapping for growth duration and its timing components in wheat. Molecular Breeding, 35, 44.
Zhang D Q. 2017. QTL mapping for stalk related traits in wheat. MSc thesis, Northwest A&F University. (in Chinese)
Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. 2020. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964. Journal of Integrative Agriculture, 19, 438–448.
Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, Zhou Y H. 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science China (Life Sciences), 47, 553–561.
Zhou C Y, Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Song X Y, Liu L X. 2021. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 19, 1721–1730. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|