Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (9): 2333-2342    DOI: 10.1016/S2095-3119(20)63289-0
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements
ZHAO Lai-bin1*, XIE Die1*, HUANG Lei1, ZHANG Shu-jie1, LUO Jiang-tao2, JIANG Bo3, NING Shun-zong3, ZHANG Lian-quan1, YUAN Zhong-wei3, WANG Ji-rui3, ZHENG You-liang3, LIU Deng-cai1, HAO Ming3 
1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, P.R.China
3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

本研究利用一个人工合成小麦与普通小麦品种构建的重组自交系,构建了一张包含28个FISH多态性标记和超过150000个单核苷酸多态性(single nucleotide polymorphism,SNP)标记的整合图谱。锚定在整合图谱的28个FISH标记中,20个FISH标记的共分离SNP标记推断的物理位置与原位杂交的物理位置一致。另外8个位置不一致的FISH标记是由亲本含有的易位染色体(1R/1B和1A/7A)或臂内倒位染色体(4A)所导致。9个在于中国春染色体上也具有杂交信号的FISH标记中,8个FISH标记的杂交信号位置与通过参考基因组序列锚定的物理位置一致,表明当前中国春参考基因组对重复序列的组装效果较好。因此,整合图谱对定位重复序列以及提高对基因组重复序列的组装精度方面具有一定利用价值

The bread wheat genome harbors a high content of repetitive DNA, which is amenable to detection and characterization using fluorescence in situ hybridization (FISH) karyotyping.  An integrated genetic map was derived from a recombinant inbred population bred from a cross between a synthetic hexaploid wheat and a commercial Chinese bread wheat cultivar, based on 28 variable FISH sites and >150 000 single nucleotide polymorphism (SNP) loci.  The majority (20/28) of the variable FISH sites were physically located within a chromosomal region consistent with the genetic location inferred from that of their co-segregating SNP loci.  The eight exceptions reflected the presence of either a translocation (1R/1B, 1A/7A) or a presumptive intra-chromosomal inversion (4A).  For eight out of the nine FISH sites detected on the Chinese Spring (CS) karyotype, there was a good match with the reference genome sequence, indicating that the most recent assembly has dealt well with the problem of placing tandem repeats.  The integrated genetic map produced for wheat is informative as to the location of blocks of tandemly repeated DNA and can aid in improving the quality of the genome sequence assembly in regions surrounding these blocks.
Keywords:  Triticeae        Triticum turgidum        repetitive DNA sequences        fluorescence in situ hybridization (FISH)        wheat genome        synthetic hexaploid wheat  
Received: 02 March 2020   Accepted:
Fund: This research was financially supported by the National Key Research and Development Program of China (2016YFD0102000).
Corresponding Authors:  Correspondence LIU Deng-cai, Tel: +86-28-86290004, E-mail:; HAO Ming, Tel: +86-28-82650313, E-mail:    
About author:  ZHAO Lai-bin, Tel: +86-28-84504260, E-mail:; XIE Die, Tel: +86-28-82650313, E-mail:; * These authors contributed equally to this study.

Cite this article: 

ZHAO Lai-bin, XIE Die, HUANG Lei, ZHANG Shu-jie, LUO Jiang-tao, JIANG Bo, NING Shun-zong, ZHANG Lian-quan, YUAN Zhong-wei, WANG Ji-rui, ZHENG You-liang, LIU Deng-cai, HAO Ming. 2021. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture, 20(9): 2333-2342.

Avni R, Nave M, Barad O. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97.
Badaeva E D, Dedkova O S, Gay G, Pukhalskyi V A, Zelenin A V, Bernard S, Bernard M. 2007. Chromosomal rearrangements in wheat: their types and distribution. Genome, 50, 907–926.
Badaeva E D, Keilwagen J, Knupffer J, Waßermann, L, Dedkova O S, Mitrofanova O P, Kovaleva O N, Liapunova O A, Pukhalskiy V A, Ozkan H, Graner A, Willcox G, Kilian B. 2015. Chromosomal passports provide new insights into diffusion of emmer wheat. PLoS ONE, 10, e0128556.
Barker R F, Harberd N P, Jarvis M G, Flavell R B. 1988. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. Journal of Molecular Biology, 201, 1–17.
Chaisson M J, Wilson R K, Eichler E. 2015. Genetic variation and the de novo assembly of human genomes. Nature Reviews Genetics, 16, 627–640.
Chapman J A, Mascher M, Buluc A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick K A, Scholz U, Waugh R, Poland J A, Muehlbauer G J, Stein N, Rokhsar D S. 2015. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16, 26.
Cuadrado A, Jouve N. 2010. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 119, 495–503.
Dreisigacker S, Kishii M, Lage J, Warburton M. 2008. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Australian Journal of Agricultural Research, 59, 413–420.
Fu S, Lv Z, Guo X, Zhang X, Han F. 2013. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. Journal of Genetics and Genomics, 40, 413–420.
Godo A, Blanco J, Vidal F, Anton E. 2013. Accumulation of numerical and structural chromosome imbalances in spermatozoa from reciprocal translocation carriers. Human Reproduction, 28, 840–849.
Gutierrez-Gonzalez J J, Mascher M, Poland J, Muehlbauer G J. 2019. Dense genotyping-by-sequencing linkage maps of two synthetic W7984×Opata reference populations provide insights into wheat structural diversity. Scientific Reports, 9, 1793.
Hao M, Luo J T, Yang M, Zhang L Q, Yan Z H, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. 2011. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome, 54, 959–964.
Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, et al. 2019. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 132, 2285–2294.
Huang X Y, Zhu M Q, Zhuang L F, Zhang S Y, Wang J J, Chen X J, Wang D R, Chen J Y, Bao Y G, Guo J, Zhang J L, Feng Y G, Chu C G, Du P, Qi Z J, Wang H G, Chen P D. 2018. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 131, 1967–1986.
IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110, 462–467.
Kapustova V, Tulpova Z, Toegelova H, Novak P, Macas J, Karafiatova M, Hribova E, Dolezel J, Simkova H. 2019. The dark matter of large cereal genomes: Long tandem repeats. International Journal of Molecular Sciences, 20, 2483.
Kawahara T, Taketa S. 2000. Fixation of translocation 2A·4B infers the monophyletic origin of Ethiopian tetraploid wheat. Theoretical and Applied Genetics, 101, 705–710.
Kihara H. 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agriculture and Horticulture, 19, 889–890.
Komuro S, Endo R, Shikata K, Kato A. 2013. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome, 56, 131–137.
Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. 2019. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 249, 663–675.
Liu D C, Hao M, Li A L, Zhang L Q, Zheng Y L, Mao L. 2016. Allopolyploidy and interspecific hybridization for wheat improvement. In: Mason A S, ed., Polyploid and Hybridization for Crop Improvement. CRC Press, Cambridge. pp. 27–52.
Martis M M, Zhou R, Haseneyer G, Schmutzer T, Vrana J, Kubalakova M, Konig S, Kugler K G, Scholz U, Hackauf B, Korzun V, Schon C, Dolezel J, Bauer E, Mayer K F, Stein N. 2013. Reticulate evolution of the rye genome. The Plant Cell, 25, 3685–3698.
McFadden E S, Sears E R. 1944. The artifcial synthesis of Triticum spelta. Records of the Genetics Society of America, 13, 26–27.
Mujeeb-Kazi A, Rosas V, Roldan S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L.s. lat.×T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution, 43, 129–134.
Mukai Y, Nakahara Y, Yamamoto M. 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 36, 489–494.
Pickering R, Klatte S, Butler R C. 2006. Identification of all chromosome arms and their involvement in meiotic homoeologous associations at metaphase I in 2 Hordeum vulgare L.×Hordeum bulbosum L. hybrids. Genome, 49, 73–78.
Shimizu N, Maekawa M, Asai S, Shimizu Y. 2015. Multicolor FISHs for simultaneous detection of genes and DNA segments on human chromosomes. Chromosome Research, 23, 649–662.
Sorrells M E, Gustafson J P, Somers D, Chao S, Benscher D, Guedira-Brown G, Huttner E, Kilian A, Mcguire P E, Ross K, Tanaka J, Wenzl P, Williams K, Qualset C O. 2011. Reconstruction of the synthetic W7984×Opata M85 wheat reference population. Genome, 54, 875–882.
Tang Z X, Yang Z J, Fu S L. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa–535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 55, 313–318.
Torresen O K, Star B, Mier P, Andrade-Navarro M A, Bateman A, Jarnot P, Gruca A, Grynberg M, Kajava A V, Promponas V J, Anisimova M, Jakobsen K S, Linke D. 2019. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research, 47, 10994–11006.
Trethowan R M, Mujeeb-Kazi A. 2008. A novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science, 48, 1255–1265.
Wang R R-C, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M. 1994. Genome symbols in the Triticeae (Poaceae). In: Wang R R C, Jensen K B, Janssi C, eds., Proceedings of the 2nd International Triticeae Symposium, Utah, USA. Utah State University, Utah. pp. 29–34.
Warburton M L, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M. 2006. Bringing wild relatives back into the family: Recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 149, 289–301.
Wickham H. 2016. Ggplot2: Elegant Graphics For Data Analysis. Springer, New York.
Yang J. 2016. QTL mapping for pre-harvest sprouting resistance and molecular characterization of six grain germination-related genes in synthetic wheat. Ph D thesis, Sichuan Agricultural University, Chengdu, China. (in Chinese)
Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y. 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. Journal of Genetics and Genomics, 36, 539–546.
Zeng D Y, Luo J T, Li Z L, Chen G, Zhang L Q, Ning S Z, Yuan Z W, Zheng Y L, Hao M, Liu D C. 2016. High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS ONE, 11, e0162847.
Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, Zhou Y H. 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C (Life Sciences), 47, 553–561.
Zhao L B, Ning S Z, Yi Y J, Zhang L Q, Yuan Z W, Wang J R, Zheng Y L, Hao M, Liu D C. 2018. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics, 19, 3.
Zhao N, Xu L, Zhu B, Li M, Zhang H, Qi B, Xu C, Han F, Liu B. 2011. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome, 54, 692–699.
Zimin A V, Puiu D, Hall R, Kingan S, Clavijo B J, Salzberg S L. 2017. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience, 6, 1–7.
[1] FANG Zheng-wu, HE Yi-qin, LIU Yi-ke, JIANG Wen-qiang, SONG Jing-han, WANG Shu-ping, MA Dong-fang, YIN Jun-liang. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1170-1185.
[2] FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei. Application of virus-induced gene silencing for identification of FHB resistant genes[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2183-2192.
No Suggested Reading articles found!