Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (12): 3101-3113    DOI: 10.1016/S2095-3119(20)63340-8
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148
BAI Sheng-sheng1, ZHANG Han-bing1, HAN Jing1, WU Jian-hui2, LI Jia-chuang1, GENG Xing-xia1, LÜ Bo-ya1, XIE Song-feng2, HAN De-jun2, ZHAO Ji-xin3, YANG Qun-hui1, WU Jun1, CHEN Xin-hong
1 Shaanxi Key Laboratory of Plant Genetic Engineering Breeding/College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
2 State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
3 Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement/College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦全蚀病 (Take-all) 是一种具有毁灭性的土传病害,培育抗病材料是控制该病害的重要途径之一。华山新麦草 (Psathyrostachys huashanica Keng) 是小麦品种改良的重要遗传资源,特别是小麦全蚀病稀缺的抗性资源。在本研究中,相比感病亲本7182,小麦-华山新麦草渗入系H148的全蚀病抗性得到了显著性提升。为了明确H148抗病性的遗传机制,我们构建了H148和西农585的F2遗传分离群体,且利用植物数量遗传体系“主基因+多基因”混合遗传模型分离分析法对其研究发现,H148的全蚀病抗性受到两对主效基因的共同控制,这两对主效基因存在一定的加性、显性和上位性效应。同时,结合集群分离分析法 (Bulked Segregant Analysis, BSA) 和小麦660K基因芯片筛选出与抗病相关的外源特异性SNP,主要分布于小麦2A染色体。根据特异性SNP开发竞争性等位基因特异性PCR (Kompetitive allele specific PCR, KASP) 分子标记,对F2群体进行基因分型,最终在2A染色体的68.8-70.1Mb区间内定位到一个主效的QTL。该目标区间在小麦参考基因组序列上存在62个候选基因,经基因功能注释显示,两个可编码蛋白的基因与系统性提升植物根系抗性相关,被预测可能参与了小麦对全蚀病的抗病反应。总之,小麦-华山新麦草渗入系H148的选育以及抗病QTL的定位,以期为小麦抗全蚀病分子辅助育种和抗病基因的精细定位提供一定的参考信息




Abstract  
Take-all is a devastating soil-borne disease of wheat (Triticum aestivum L.).  Cultivating resistant line is an important measure to control this disease.  Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.  This study reported on a wheat-P. huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.  To elucidate the genetic mechanism of resistance in H148, the F2 genetic segregating population of H148×XN585 was constructed.  The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive, dominant and epistasis effects.  Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P. huashanica alien introgression were mainly distributed on the chromosome 2A.  Genotyping of the F2 population using the KASP marker mapped a major QTL in an interval of 68.8–70.1 Mb on 2AS.  Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.  According to the functional annotation of genes, two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.  The development of wheat-P. huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.
Keywords:  wheat        Psathyrostachys huashanica Keng        take-all        genetic analysis        quantitative trait loci  
Received: 16 April 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31571650 and 31771785), the National Key Research and Development Program of China (2017YFD0100701), the Key Projects in Shaanxi Provincial Agricultural Field, China (2018ZDXM-NY-006), and the Key Research and Development Project of Shaanxi Province, China (2019ZDLNY04-05).
Corresponding Authors:  Correspondence WU Jun, E-mail: 13572016162@163.com; CHEN Xin-hong, E-mail: cxh2089@126.com   

Cite this article: 

BAI Sheng-sheng, ZHANG Han-bing, HAN Jing, WU Jian-hui, LI Jia-chuang, GENG Xing-xia, LÜ Bo-ya, XIE Song-feng, HAN De-jun, ZHAO Ji-xin, YANG Qun-hui, WU Jun, CHEN Xin-hong . 2021. Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148. Journal of Integrative Agriculture, 20(12): 3101-3113.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174–178.
Akaike H. 1977. On Entropy Maximization Principle. Application of Statistics. Amsterdam Press, The Netherlands. pp. 27–41.
Bai S S, Yuan F P, Zhang H B, Zhang Z Y, Zhao J X, Yang Q H, Wu J, Chen X H. 2020. Characterization of the wheat-Psathyrostachys huashania Keng 2Ns/2D substitution line H139: A novel germplasm with enhanced resistance to wheat take-all. Frontiers in Plant Science, 11, 233.
Baden C. 1991. A taxonomic revision of Psathyrostachys (Poaceae). Nordic Journal Botany, 11, 3–26.
Chambers S C, Flentje N T. 1967. Studies on oat-attacking and wheat-attacking isolates of ophiobolus graminis in Australia. Australian Journal of Biological Sciences, 20, 927–940.
Chen S Y, Hou W S, Zhang A J, Fu J, Yang Q H. 1996. Breeding and cytogenetic study of Triticum aestivum-Psathyrostachys huashanica alien addition lines. Journal of Genetics and Genomics, 23, 447–452. (in Chinese)
Chen S Y, Zhang A J, Fu J. 1991. The hybridization between Triticum aestivum and Psathyrotachys huashanica. Journal of Genetics and Genomics, 18, 508–512. (in Chinese)
Cota-Sánchez J H, Remarchuk K, Ubayasena K. 2006. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Report, 24, 161–167.
Dhaliwal A S, Mares D J, Marshall D R. 1990. Measurement of dough surface stickness associated with 1B/1R chromosome translocation in bread wheats. Journal of Cereal Science, 12, 165–175.
Du W L, Wang J, Lu M, Sun S G, Chen X H, Zhao J X, Yang Q H, Wu J. 2013. Molecular cytogenetic identification of a wheat-Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Molecular Breedinig, 31, 879–888.
Du W L, Wang J, Pang Y H, Wu J, Zhao J X, Liu S H, Yang Q H, Chen X H. 2014. Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica, 200, 207–220.
Feng Y X, Li W, Sun H Y, Deng Y Y, Yu H S, Chen H G. 2013. Genetic diversity of Gaeumannomyces graminis var. Tritici populations in Huang-Huai Winter Wheat Production Region of China. Acta Phytophulacica Sinica, 40, 495–501. (in Chinese)
Gai J Y, Zhang Y M, Wang J K. 2003. Genetic System of Quantitative Traits in Plants. Science Press, Beijing. (in Chinese)
Guyomarc’h H, Sourdille P, Edwards K J, Bernard M. 2002. Studies of the transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theoretical and Applied Genetics, 105, 736–744.
Han F P, Lamb J C, Birchler J A. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America, 103, 3238–3243.
Han G H, Liu S Y, Wang J, Jin Y L, Zhou Y L, Luo Q L, Liu H, Zhao H, An D G. 2020. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Disease, doi: 10.1094/PDIS-02-20-0323-RE.
Hernández-Restrepo M, Groenewald J Z, Elliott M L, Canning G, Mcmillan V E, Crous P W. 2016. Take-all or nothing. Studies in Mycology, 83, 19-48.
IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, 6403.
Kuo P C. 1987. Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)
Liu Y F, Liu Z D, Guo R L. 2012. Research progress of wheat take-all disease resistance and discussion on its breeding approaches. Journal of Henan Agricultural Sciences, 41, 6–9. (in Chinese)
Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. 2020. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. Journal of Integrative Agriculture, 19, 1163–1169.
Ma P T, Han G H, Zheng Q, Liu S Y, Han F P, Wang J, Luo Q L, An D G. 2020. Development of novel wheat-rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Disease, 104, 260–268.
McMillan V E, Gutteridge R J, Hammond-Kosack K E. 2014. Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species. BMC Plant Biology, 14, 1471–2229.
Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Michelmore R W, Paran I, Kesseli R. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.
Nahar K, Kyndt T, Vleesschauwer D D, Hofte M, Gheysen G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 157, 305–316.
Niks R E, Qi X, Marcel T C. 2015. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review Phytopathology, 53, 445–470.
Osborne S J, McMillan V E, White R, Hammond-Kosack K E. 2018. Elite UK winter wheat cultivars differ in their ability to support the colonization of beneficial root-infecting fungi. Journal of Experimental Botany, 69, 3103–3115.
Penrose L. 1985. Evidence for resistance in wheat cultivars grown in sand culture to the take-all pathogen, Gaeumannomyces graminis var. tritici. Annals of Applied Biology, 107, 105–108.
Pestsova E, Ganal M W, Röder M S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43, 689–697.
Ramirez-Gonzalez R H, Uauy C, Caccamo M. 2015. PolyMarker: A fast polyploid primer design pipeline. Bioinformatics, 31, 2038–2039.
Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. 1998. A microsatellite map of wheat. Genetics, 149, 2007–2023.
Rosyara U, Kishii M, Payne T, Sansaloni C P, Singh R P, Braun H J, Dreisigacker S. 2019. Genetic contribution of synthetic hexaploid wheat to CIMMYT’s spring bread wheat breeding germplasm. Scientific Reports, 9, 12355.
Somers D J, Isaac P, Edwards K. 2004. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.
Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 110, 550–560.
Sourdille P, Cadalen T, Guyomarc’h H, Snape J W, Perretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. 2003. An update of the Courtot/Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics, 106, 530–538.
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74, 174–183.
Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 7–78.
Wang J, Podlich D W, Cooper M, Delacy I H. 2001. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 103, 804–816.
Wang M N, Shang H S. 2000. Evalution of resistance in Psathyrostachys huashaica to wheat take-all fungus. The Journal of Northwest Agricultural University, 28, 69–71. (in Chinese)
Wang N, Feng Y X, Du W Z, Wang Y, Chen H G. 2012. Virulence of wheat take-all pathogen and disease resistance of different wheat cultivars. Journal of Plant Genetic Resources, 13, 478–483. (in Chinese)
Wei F Q, Wu J, Zhao J X, Chen X H, Liu S H, Pang Y H. 2009. Genetic analysis of resistance to take-all fungus of wheat line H9021 derived from wheat-Psathyrostachys huashanica. Journal of Triticeae Crops, 29, 153–156. (in Chinese)
Wiesnerhanks T, Nelson R. 2016. Multiple disease resistance in plants. Annual Review Phytopathology, 54, 8.1–8.24.
Win K T, Vegas J, Zhang C, Song K, Lee S. 2016. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using nextgeneration sequencing and conventional methods. Theoretical and Applied Genetics, 130, 199–211.
Wu J, Zhao J X, Chen X H, Liu S H, Yang Q H, Liu W X, Wei F Q, Dong J, Zhu J C. 2007. Cytology characteristic and GISH analysis on the progenies derived from common wheat (T. aestivum L.)×Psathyrostachys huashanica. Journal of Triticeae Crops, 27, 772–775. (in Chinese)
Wu J H, Wang Q L, Kang Z S, Liu S J, Li H Y, Mu J M, Dai M F, Han D J, Zeng Q D, Chen X M. 2017b. Development and validation of KASP-SNP markers for QTL underlying resistance to stripe rust in common wheat cultivar P10057. Plant Disease, 101, 2079–2087.
Wu J H, Wang Q L, Liu S J, Huang S, Mu J M, Zeng Q D, Huang L L, Han D J, Kang Z S. 2017a. Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Frontiers in Plant Science, 8, 653–662.
Wu J H, Zeng Q D, Wang Q L, Liu S J, Yu S Z, Mu J M, Huang S, Sela H, Distelfeld A, Huang L L, Han D J, Kang Z S. 2018. SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theoretical and Applied Genetics, 131, 1–16.
Xie S F, Ji W Q, Zhang Y Y, Zhang J J, Hu W G, Li J, Wang C Y, Zhang H, Chen C H. 2019. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat. Acta Agronomica Sinica, 3, 365–384. (in Chinese)
Yang H, Li C, Lam H M, Clements J, Yan G, Zhao S C. 2015. Sequencing consolidates molecular makers with plant breeding practice. Theoretical and Applied Genetics, 128, 779–795.
Zhang Y W, Du Y, Ren W, Zhang Y. 2018. SEA: Segregation analysis. R package version 1.0. [2018-07-11]. https://cran.r-project.org/web/packages/SEA/index.html
Zhao J X, Chen X H, Wang X L, Wu J, Fu J, He B R, Song Y Z, Sun Z G. 2003. C-Banding identification of alien substitution lines and alien additional lines in Triticum-Psathyrostachys. Journal of Northweat A&F University, 31, 1–4. (in Chinese)
 
[1] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[4] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[5] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[6] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[7] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[8] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[9] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[10] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[11] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[12] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[13] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[14] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[15] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
No Suggested Reading articles found!