Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (8): 1947-1960    DOI: 10.1016/S2095-3119(19)62825-X
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions
LIU Rui-xuan1, WU Fang-kun1, YI Xin2, LIN Yu1, WANG Zhi-qiang1, LIU Shi-hang1, DENG Mei1, MA Jian1, WEI Yu-ming1, ZHENG You-liang1, LIU Ya-xi1  
 
1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Synthetic hexaploid wheat (SHW), possesses numerous genes for drought that can help breeding for drought-tolerant wheat varieties.  We evaluated 10 root traits at seedling stage in 111 F9 recombinant inbred lines derived from a F2 population of a SHW line (SHW-L1) and a common wheat line, under normal (NC) and polyethylene glycol-simulated drought stress conditions (DC).  We mapped quantitative trait loci (QTLs) for root traits using an enriched high-density genetic map containing 120 370 single nucleotide polymorphisms (SNPs), 733 diversity arrays technology markers (DArT) and 119 simple sequence repeats (SSRs).  With four replicates per treatment, we identified 19 QTLs for root traits under NC and DC, and 12 of them could be consistently detected with three or four replicates.  Two novel QTLs for root fresh weight and root diameter under NC explained 9 and 15.7% of the phenotypic variation respectively, and six novel QTLs for root fresh weight, the ratio of root water loss, total root surface area, number of root tips, and number of root forks under DC explained 8.5–14% of the phenotypic variation.  Here seven of eight novel QTLs could be consistently detected with more than three replicates.  Results provide essential information for fine-mapping QTLs related to drought tolerance that will facilitate breeding drought-tolerant wheat cultivars.
Keywords:  synthetic hexaploid wheat        quantitative trait loci        drought stress        root traits  
Received: 16 April 2019   Accepted:
Fund: This study was supported by the National Natural Science Foundation of China (31771794, 91731305 and 31560388), the outstanding Youth Foundation of the Department of Science and Technology of Sichuan Province, China (2016JQ0040), the Key Technology Research and Development Program of the Department of Science and Technology of Sichuan Province, China (2016NZ0057), and the International Science & Technology Cooperation Program of the Bureau of Science and Technology of Chengdu, China (2015DFA306002015-GH03-00008-HZ).
Corresponding Authors:  Correspondence LIU Ya-xi, Tel: +86-28-86290952, Fax: +86-28-82650350, E-mail: liuyaxi@sicau.edu.cn, yaxi.liu@hotmail.com, ORCID: 0000-0001-6814-7218   
About author:  LIU Rui-xuan, E-mail: 947130299@qq.com;

Cite this article: 

LIU Rui-xuan, WU Fang-kun, YI Xin, LIN Yu, WANG Zhi-qiang, LIU Shi-hang, DENG Mei, MA Jian, WEI Yu-ming, ZHENG You-liang, LIU Ya-xi. 2020. Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions. Journal of Integrative Agriculture, 19(8): 1947-1960.

Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill B S, Dhaliwal H S. 2002. PHI-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica, 127, 377–382.
Al-Chaarani G R, Gentzbittel L, Wedzony M, Sarrafi A. 2005. Identification of QTL for germination and seedling development in sunflower (Helianthus annuus L.). Plant Science, 169, 221–227.
Anna I, Daniela M, Ann R M, Pasquale D V, Vito M, Pina F, Antonio B, Agata G, Anna M M. 2017. Mapping QTL for root and shoot morphological traits in a durum wheat×
T. dicoccum segregating population at seedling stage. International Journal of Genomics, 2017, 1–17.
Ashraf M. 2010. Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28, 169–183.
Assefa S. 2000. Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genetic Resources and Crop Evolution, 47, 135–140.
Atkinson J A, Wingen L U, Griffiths M, Pound M P, Gaju O, Foulkes M J, Gouis J L, Griffiths S, Bennett M J, King J, Wells D M. 2015. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 66, 2283–2292.
Ayalew H, Liu H, Yan G J. 2017. Identification and validation of root length QTL for water stress resistance in hexaploid wheat (Titicum aestivum L.). Euphytica, 213, 126.
Bai C H, Liang Y L, Hawkesford M J. 2013. Identification of QTL associated with seedling root traits and their correlation with plant height in wheat. Journal of Experimental Botany, 64, 1745–1753.
Bhatta M, Morgounov A, Belamkar V, Baenziger P. 2018. Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. International Journal of Molecular Sciences, 19, 3011.
Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112, 119–123.
Cao P, Ren Y Z, Zhang K P, Teng W, Zhao X Q, Dong Z Y, Liu X, Qin H J, Li Z S, Wang D W, Tong Y P. 2014. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Molecular Breeding, 33, 975–985.
Colombi T, Walter A. 2017. Genetic diversity under soil compaction in wheat: root number as a promising trait for early plant vigor. Frontiers in Plant Science, 8, 15117.
Coudert Y, Périn C, Courtois B, Khong N G, Gantet P. 2010. Genetic control of root development in rice, the model cereal. Trends in Plant Science, 15, 219–226.
Courtois B, Ahmadi N, Khowaja F, Price A H, Rami J F, Frouin J, Hamelin C, Ruiz M. 2009. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2, 115–128.
Cox T S, Hatchett J H. 1994. Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Science, 34, 958–960.
Cox T S, Raupp W J, Gill B S. 1994. Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Science, 34, 339–343.
Cox T S, Raupp W J, Wilson D L, Gill B S, Leath S, Bockus W W. 1992. Resistance to foliar diseases in a collection of Triticum tauschii germplasm. Plant Disease, 76, 1061–1064.
Djanaguiraman M, Prasad P V V, Kumari J, Rengel Z. 2019. Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant and Soil, 439, 57–73.
Ergen N Z, Budak H. 2009. Sequencing over 13,000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell and Environment, 32, 220–236.
Fleury D, Jefferies S, Kuchel H, Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211–3222.
Herder G D, Isterdael G V, Beeckman T, Smet I D. 2010. The roots of a new green revolution. Trends in Plant Science, 15, 600–607.
Hoagland D R, Arnon D I. 1950. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, 347, 1–32.
Ibrahim S E, Schubert A, Pillen K, Léon J. 2012. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. International Journal of Agricultural Science, 2, 619–629.
Kabir M R, Liu G, Guan P F, Wang F, Khan A A, Ni Z F, Yao Y Y, Hu Z R, Xin M M, Peng H R, Sun Q X. 2015. Mapping QTL associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica, 206, 175–190.
Kathiresan A, Lafitte H R, Chen J, Mansueto L, Bruskiewich R, Bennett J. 2006. Gene expression microarrays and their application in drought stress research. Field Crops Research, 97, 101–110.
Kramer P J.1969. Plant and Soil Water Relationships: A modern Synthesis. McGraw Hill, New York, NY. p. 482.
Kumar A, Dixit S, Ram T, Yadaw R B, Mishra K K, Mandal N P. 2014. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65, 6265–6278.
Kumar U, Joshi A K, Kumari M, Paliwal R, Kumar S, Röder M S. 2010. Identification of QTL for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’בSonalika’population. Euphytica, 174, 437–445.
Lage J, Skovmand B, Andersen S B. 2003. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum×Aegilops tauschii crosses. Journal of Economic Entomology, 96, 202–206.
Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. 2006. Molecular mapping of stripe rust resistance geneYrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theoretical and Applied Genetics, 112, 1434–1440.
Lianne M O, Tzion F, Ephrath J E, Tamar K, Yehoshua S. 2017. Ancestral QTL alleles from wild emmer wheat enhance root development under drought in modern wheat. Frontiers in Plant Science, 8, 703.
Liu X L, Li R Z, Chang X P, Jing R L. 2013. Mapping QTL for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 189, 51–66.
Lopes M S, Reynolds M P. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37, 147–156.
Lopes M S, Reynolds M P. 2011. Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexaploid wheat. Crop Science, 51, 1617–1626.
Ludlow M M, Muchow R C. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107–153.
Ma H, Singll R P, Muieeb-kazi A. 1995. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 82, 117–120.
Ma J, Zheng Z, Stiller J, Lan X J, Liu Y, Deng M, Wang P H, Pu Z E, Chen G D, Jiang Q T, Wei Y M, Zheng Y L. 2017. Identification and characterization of genes on a single subgenome in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’. Genome, 60, 208.
Mares D, Mrva K. 2008. Genetic variation for quality traits in synthetic wheat germplasm. Australian Journal of Agricultural Research. 59, 406–412.
Marjaei H S, Ranjbar G A, Naji A M. 2014. Evaluation of QTL associated with salt tolerance on seedling stage in wheat. International Journal of Biosciences, 4, 163–168.
McCartney C A, Brûlé-Babel A L, Fedak G, Martin R A, McCallum B D, Gilbert J, Hiebert C W, Pozniak C J. 2016. Fusarium head blight resistance QTL in the spring wheat cross Kenyon/86ISMN 2137. Frontiers in Microbiology, 7, 1542.
Meister R, Rajani M S, Ruzicka D, Schachtman D P. 2014. Challenges of modifying root traits in crops for agriculture. Trends in Plant Science, 19, 779–788.
Meng L, Li H H, Zhang L Y, Wang J K. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Mujeeb-Kazi, A, Rosas V, Roldan S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L.×T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution, 43, 129–134.
Mwadzingeni L, Shimelis H, Dube E, Laing M D, Tsilo T J. 2016. Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture, 15, 935–943.
Nicotra A B, Davidson A. 2010. Adaptive phenotypic plasticity and plant water use. Functional Plant Biology, 37, 117–127.
Noordwijk M V, Spek L Y, Willigen P D. 1994. Proximal root diameters as predictor of total root size for fractal branching models. Plant and Soil, 164, 107–117.
Pu Z E, Pei Y, Yang J, Ma J, Li W, Liu D C, Wang J R, Wei Y M, Zheng Y L. 2018. A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant and Soil, 425, 287–296.
Qin P, Lin Y, Hu Y D, Liu K, Mao S S, Li Z Y, Wang J R, Liu Y X, Wei Y M, Zheng Y L. 2016. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genetics and Molecular Biology, 39, 398–407.
Qiu X Q, Gao Y, Huang L, Li X Q, Sun J S, Duan A W. 2013. Temporal and spatial distribution of root morphology of winter wheat. Scientia Agricultura Sinica, 46, 2211–2219. (in Chinese)
Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi? D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, et al. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTL for grain yield across a range of environments. Theoretical and Applied Genetics, 110, 865–880.
Ren Y Z, He X, Liu D C, Li J J, Zhao X Q, Li B, Tong Y P, Zhang A M, Li Z S. 2012. Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 30, 139–148.
Richards R A, Rebetzke G J, Condon A G, Van Herwaarden A F. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111.
Rogers E D, Benfey P N. 2015. Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 32, 93–98.
Sharma R. 2013. Does low yield heterosis limit commercial hybrids in wheat? African Journal of Agricultural Research, 8, 6663–6669.
Smith S E, Kuehl R O, Ray I M, Hui R, Soleri D. 1998. Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Science, 38, 1125–1129.
Su Q N, Zhang X L, Zhang W, Zhang N, Song L Q, Liu L, Xue X, Liu G T, Liu J J, Meng D Y, Zhi L Y, Ji J, Zhao X Q, Yang C L, Tong Y P, Liu Z Y, Li J M. 2018. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 9, 1484.
Sun J J, Guo Y, Zhang G Z, Gao M G, Zhang G H, Kong F M, Zhao Y, Li S S. 2013. QTL mapping for seedling traits under different nitrogen forms in wheat. Euphytica, 191, 317–331.
Tao Y, Yi X, Lin Y, Wang Z Q, Wu F K, Jiang X J, Liu S H, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L, Liu Y X. 2019. Quantitative trait locus mapping for panicle exsertion length in common wheat using two related recombinant inbred line populations. Euphytica, 215, 104.
Trethowan R M, Mujeeb-Kazi A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science, 48, 1255–1265.
Valkoun J, Dostal J, Kucerova D. 1990. Triticum×Aegilops hybrids through embryo culture. In: Wheat, Springer, Berlin, Heidelberg. pp. 152–166.
Wang L, Liu K, Mao S S, Li Z Y, Lu Y L, Wang J R, Liu Y X, Wei Y M, Zheng Y L. 2015. Large-scale screening for Aegilops tauschii tolerant genotypes to phosphorus deficiency at seedling stage. Euphytica, 204, 571–586.
Wang Z Q, Shi H R, Yu S F, Zhou W L, Li J, Liu S H, Deng M, Ma J, Wei Y M, Zheng Y L, Liu Y X. 2019. Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. Theoretical and Applied Genetics, 132, 1–13.
Wasson A P, Richards R A, Chatrath R, Misra S C, Prasad S S, Rebetzke G J, Kirkegaard J A, Christopher J, Watt M. 2012. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63, 3485–3498.
Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. 2017. Identification of major quantitative trait loci for root diameters in synthetic hexaploid wheat under phosphorus-deficient conditions. Journal of Applied Genetics, 58, 437–447.
Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. 2009. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. Journal of Genetics and Genomics, 36, 539–546.
Yang X L, Liu Y X, Wu F K, Jiang X J, Lin Y, Wang Z Q, Zhang Z L, Ma J, Chen G Y, Wei Y M, Zheng Y L. 2018. Quantitative trait loci analysis of root traits under phosphorus deficiency at the seedling stage in wheat. Genome, 61, 209–215.
Yao F J, Zhang X M, Ye X L, Li J, Long L, Yu C, Li J, Wang Y Q, Wu Y, Wang J R, Jiang Q T, Li W, Ma J, Wei Y M, Zheng Y L, Chen G Y. 2019. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genetics, 20, 38.
Ye H, Roorkiwal M, Valliyodan B, Zhou L J, Chen P Y, Varshney R K, Nguyen H T. 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 69, 3267–3277.
Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE, 6, e17595.
Yu M, Chen G Y, Zhang L Q, Liu Y X, Liu D C, Wang J R, Pu Z E, Zhang L, Lan X J, Wei Y M, Liu C J, Zheng Y L. 2014. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture, 13, 1835–1844.
Zhang H, Cui F, Wang L, Li J, Ding A M, Zhao C H, Bao Y G, Yang Q P, Wang H G. 2013. Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. Journal of Genetics, 92, 213–231.
Zhang H Q, Ma S Q. 2008. Transfer of resistant genes from Aegilops tauschii L. to Triticum aestivum L. and their mapping by SSR. Journal of China Agricultural University, 13, 5–11. (in Chinese)
Zhang H W, Wang X, Pan Q C, Li P, Liu Y J, Lu X D, Zhong W S, Li M Q, Han L Q, Li J, Wang P X, Li D D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G Y, Li L. 2019. QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Molecular Plant, 12, 426–437.
Zhao C S, Craig J C, Petzold H E, Dickerman A W, Beers E P. 2005. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiology, 138, 803–818.
Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. 2005. Mapping QTL for seedling root traits in common wheat. Scientia Agricultura Sinica, 38, 1951–1957. (in Chinese)
 
[1] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[2] DAI Shou-fen, CHEN Hai-xia, LI Hao-yuan, YANG Wan-jun, ZHAI Zhi, LIU Qian-yu, LI Jian, YAN Ze-hong. Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1877-1885.
[3] ZHAO Lai-bin, XIE Die, HUANG Lei, ZHANG Shu-jie, LUO Jiang-tao, JIANG Bo, NING Shun-zong, ZHANG Lian-quan, YUAN Zhong-wei, WANG Ji-rui, ZHENG You-liang, LIU Deng-cai, HAO Ming. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2333-2342.
[4] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[5] BAI Sheng-sheng, ZHANG Han-bing, HAN Jing, WU Jian-hui, LI Jia-chuang, GENG Xing-xia, LÜ Bo-ya, XIE Song-feng, HAN De-jun, ZHAO Ji-xin, YANG Qun-hui, WU Jun, CHEN Xin-hong . Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3101-3113.
[6] LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.
[7] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[8] Tahmina SHAR, SHENG Zhong-hua, Umed ALI, Sajid FIAZ, WEI Xiang-jin, XIE Li-hong, JIAO Gui-ai, Fahad ALI, SHAO Gao-neng, HU Shi-kai, HU Pei-song, TANG Shao-qing. Mapping quantitative trait loci associated with starch paste viscosity attributes by using double haploid populations of rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1691-1703.
[9] ZHANG Ya-jie, XU Jing-nan, CHENG Ya-dan, WANG Chen, LIU Gao-sheng, YANG Jian-chang. The effects of water and nitrogen on the roots and yield of upland and paddy rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1363-1374.
[10] LIANG Xiao-yan, GUO Feng, FENG Ye, ZHANG Jia-lei, YANG Sha, MENG Jing-jing, LI Xin-guo, WAN Shu-bo. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.
[11] XUE Pao1, ZHANG Ying-xin1, LOU Xiang-yang1, ZHU Ai-ke, CHEN Yu-yu, SUN Bin, YU Ping, CHENG Shi-hua, CAO Li-yong, ZHAN Xiao-deng .
Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1838-1850.
[12] ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1579-1586.
[13] GENG Da-li, LU Li-yuan, YAN Ming-jia, SHEN Xiao-xia, JIANG Li-juan, LI Hai-yan, WANG Li-ping, YAN Yan, XU Ji-di, LI Cui-ying, YU Jian-tao, MA Feng-wang, GUAN Qing-mei. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1280-1294.
[14] Ghulam Shabir, Kashif Aslam, Abdul Rehman Khan, Muhammad Shahid, Hamid Manzoor, Sibgha Noreen, Mueen Alam Khan, Muhammad Baber, Muhammad Sabar, Shahid Masood Shah, Muhammad Arif. Rice molecular markers and genetic mapping: Current status and prospects[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1879-1891.
[15] YANG Guang, ZHAI Hong, WU Hong-yan, ZHANG Xing-zheng, Lü Shi-xiang, WANG Ya-ying, LI Yu-qiu, HU Bo, WANG Lu, WEN Zi-xiang, WANG De-chun, WANG Shao-dong, Kyuya Harada, XIA Zheng-jun, XIE Fu-ti. QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of Japanese×Chinese cultivars[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1900-1912.
No Suggested Reading articles found!