Abed A, Belzile F. 2019.
Comparing single-SNP, multi-SNP, and haplotype-based approaches in association
studies for major traits in barley. Plant Genome, 12,
190036.
Abou-Elwafa S F. 2016.
Association mapping for yield and yield-contributing traits in barley under
drought conditions with genome-based SSR markers. Comptes Rendus Biologies, 339, 153–162.
Ali M M A E H, Mansour E, Awaad H
A. 2021. Drought tolerance in some field crops: state of the art review. In:
Awaad H, Abu-Hashim M, Negm A, eds., Mitigating Environmental Stresses for Agricultural Sustainability in Egypt.
Springer, Cham. pp. 17–62.
Ambawat S, Sharma P, Yadav N R,
Yadav R C. 2013. MYB transcription factor genes as regulators for plant
responses: an overview. Physiology and Molecular Biology of Plants, 19, 307–321.
Baidyussen A, Jatayev S,
Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta N K, Gupta S, Schramm C,
Anderson P, Jenkins C L D, Soole K L, Langridge P, Shavrukov Y. 2021.
Expression of specific alleles of Zinc-finger transcription factors, HvSAP8 and HvSAP16, and corresponding SNP markers, are associated with drought
tolerance in barley populations. International Journal of Molecular Sciences, 22, 12156.
Baum M, Grando S, Backes G,
Jahoor A, Sabbagh A, Ceccarelli S. 2003. QTLs for agronomic traits in the
Mediterranean environment identified in recombinant inbred lines of the cross
‘Arta’ × H. spontaneum 41.1. Theoretical and Applied Genetics, 107, 1215–1225.
Baum M, von Korff M, Guo P, Lakew
B, Hamwieh A, Lababidi S, Udupa S M, Sayed H, Choumane W, Grando S, Ceccarelli
S. 2007. Molecular approaches and breeding strategies for drought tolerance in
barley. In: Varshney R K, Tuberosa R, eds., Genomics Assisted Crop Improvement. Genomics Applications in Crops. vol.
2. Springer. pp. 51–79.
Bedada G, Westerbergh A, Müller
T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid K J. 2014. Transcriptome
sequencing of two wild barley (Hordeum spontaneum L.) ecotypes
differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics, 15, 995.
Ben-Ari G, Lavi U. 2012.
Marker-assisted selection in plant breeding. In: Altman A, Hasegawa P M, eds., Plant Biotechnology and Agriculture. Prospects for the 21st Century. Elsevier, Amsterdam. pp. 163–183.
Bernardo R. 2004. What proportion
of declared QTL in plants are false? Theoretical and Applied Genetics, 109, 419–424.
Boopathi N M. 2020. Genetic Mapping and Marker Assisted Selection. Basics, Practice and Benefits. Springer-Nature, Singapore. p. 504.
Cantalapiedra C P, García-Pereira
M J, Gracia M P, Igartua E, Casas A M, Contreras-Moreira B. 2017. Large
differences in gene expression responses to drought and heat stress between
elite barley cultivar Scarlett and a Spanish landrace. Frontiers in Plant Science, 8, 647.
Cheng A, Chai H H, Ho W K, Bamba
A S A, Feldman A, Kendabie P, Halim R A, Tanzi A, Mayes S, Massawe F. 2017.
Molecular marker technology for genetic improvement of underutilised crops. In:
Abdullah S N A, Chai-Ling H, Wagstaff C, eds., Crop Improvement.
Springer, Cham. pp. 47–70.
Chopra S. 2014. Techniques and
tools of modern plant breeding: Field crops. In: Ricroch A, Chopra S, Fleischer
S J, eds., Plant Biotechnology: Experience and Future Prospects. Springer, Cham. pp. 25–33.
Close T J, Bhat P R, Lonardi S,
Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J T, Wanamaker S, Bozdag
S, Roose M L, Moscou M J, Chao S, Varshney R K, Szűcs P, Sato K, Hayes P M,
Matthews D E, Kleinhofs A, et al. 2009. Development and
implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.
Cobb J N, Biswas P S, Platten J
D. 2019. Back to the future: Revisiting MAS as a tool for modern plant
breeding. Theoretical and Applied Genetics, 132,
647–667.
Comadran J, Russell J R, van
Eeuwijk F A, Ceccarelli S, Grando S, Baum M, Stanca A M, Pecchioni N,
Mastrangelo A M, Akar T, Al-Yassin A, Benbelkacem A. 2008. Mapping adaptation
of barley to droughted environments. Euphytica, 161, 35–45.
Czajkowska B I, Jones G, Brown T
A. 2019. Diversity of a wall-associated kinase gene in wild and cultivated
barley. PLoS ONE, 14, e0218526.
Dhanagond S, Liu G, Zhao Y, Chen
D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. 2019. Non-invasive
phenotyping reveals genomic regions involved in pre-anthesis drought tolerance
and recovery in spring barley. Frontiers in Plant Science, 10, 1307.
Druka A, Franckowiak J, Lundqvist
U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V,
Morgante M, Stein N, Waugh R. 2011. Genetic dissection of barley morphology and
development. Plant Physiology, 155, 617–627.
Elakhdar A, Solanki S, Kubo T,
Abed A, Elakhdar I, Khedr R, Hamwieh A, Capo-chichi L J A, Abdelsattar M,
Franckowiak J D, Qualset C O. 2022. Barley with improved drought tolerance:
Challenges and perspectives. Environmental and Experimental Botany, 201, 104965.
Elbasyoni I S, Eltaher S, Morsy
S, Mashaheet A M, Abdallah A M, Ali H G, Mariey S A, Baenziger P S, Frels K.
2022. Novel single-nucleotide variants for morpho-physiological traits involved
in enhancing drought stress tolerance in barley. Plants, 11,
3072.
Fan Y, Shabala S, Ma Y, Xu R,
Zhou M. 2015. Using QTL mapping to investigate the relationships between
abiotic stress tolerance (drought and salinity) and agronomic and physiological
traits. BMC Genomics, 16, 43.
Fatemi F, Kianersi F,
Pour-Aboughadareh A, Poczai P, Jadidi O. 2022. Overview of identified genomic
regions associated with various agronomic and physiological traits in barley
under abiotic stresses. Applied Sciences, 12, 5189.
Fiust A, Rapacz M, Wójcik-Jagła
M, Tyrka M. 2015. Development of DArT-based PCR markers for selecting
drought-tolerant spring barley. Journal of Applied Genetics, 56, 299–309.
Ghatak A, Chaturvedi P, Weckwerth
W. 2017. Cereal crop proteomics: Systemic analysis of crop drought stress
responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8, 757.
Gous P W, Hickey L, Christopher J
T, Franckowiak J, Fox G P. 2016. Discovery of QTL for stay-green and
heat-stress in barley (Hordeum vulgare) grown under simulated
abiotic stress conditions. Euphytica, 207, 305–317.
Grover A, Sharma P C. 2016.
Development and use of molecular markers: Past and present. Critical Reviews in Biotechnology, 36, 290–302.
Gudys K, Guzy-Wrobelska J, Janiak
A, Dziurka M A, Ostrowska A, Hura K, Jurczyk B, Zmuda K, Grzybkowska D, Srobka
J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikolajczak K,
Ogrodowicz P, Krystkowiak K, Kuczynska A, Krajewski P, Szarejko I. 2018.
Prioritization of candidate genes in QTL regions for physiological and
biochemical traits underlying drought response in barley (Hordeum vulgare L.). Frontiers in Plant Science, 9, 769.
Guo P, Baum M, Grando S,
Ceccarelli S, Bai G, Li R, von Korff M, Varshney R, Graner A, Valkoun J. 2009.
Differentially expressed genes between drought-tolerant and drought-sensitive
barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60, 3531–3544.
Gürel F, Öztürk Z N, Uçarlı C,
Rosellini D. 2016. Barley genes as tools to confer abiotic stress tolerance in
crops. Frontiers in Plant Science, 7, 1137.
Harb A M, Samarah N H. 2015.
Physiological and molecular responses to controlled severe drought in two
barley (Hordeum vulgare L.) genotypes. Journal of Crop Improvement, 29, 82–94.
Hayden M, Tabone T, Nguyen T,
Coventry S, Keiper F, Fox R, Chalmers K, Mather D, Eglinton J. 2010. An
informative set of SNP markers for molecular characterisation of Australian
barley germplasm. Crop Pasture Science, 61, 70–83.
Henry R J (ed). 2013. Molecular Markers in Plants. Wiley-Blackwell, Ames, USA. p. 216.
Honsdorf N, March T J, Pillen K.
2017. QTL controlling grain filling under terminal drought stress in a set of
wild barley introgression lines. PLoS ONE, 12, e0185983.
Hu H, Xiong L. 2014. Genetic
engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715–741.
Hübner S, Korol A B, Schmid K J.
2015. RNA-Seq analysis identifies genes associated with differential
reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biology, 15, 134.
Huq A, Akter S, Nou S, Kim H T,
Jung Y J, Kang K K. 2016. Identification of functional SNPs in genes and their
effects on plant phenotypes. Journal of Plant Biotechnology, 43, 1–11.
IBGSC (International Barley
Sequencing Consortium). 2012. A physical, genetic and functional sequence
assembly of the barley genome. Nature, 491, 711–716.
Igartua E, Mansour E,
Cantalapiedra C P, Contreras-Moreira B, Gracia M P, Fuster P, Escribano J,
Molina-Cano J L, Moralejo M, Ciudad F J, Thomas W T B, Karsai I, Casas A M.
2015. Selection footprints in barley breeding lines detected by combining
genotyping-by-sequencing with reference genome information. Molecular Breeding, 35, 11.
Inostroza L, del Pozo A, Matus I,
Castillo D, Hayes P, Machado S, Corey A. 2009. Association mapping of plant
height, yield, and yield stability in recombinant chromosome substitution lines
(RCSLs) using Hordeum vulgare subsp. spontaneum as a
source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23, 365–376.
Jabbari M, Fakheri B A, Aghnoum
R, Darvishzadeh R, Mahdi N N, Ataei R, Koochakpour Z, Razi M. 2022.
Identification of DNA markers associated with phenological traits in spring
barley (Hordeum vulgare L.) under drought stress conditions. Cereal Research Communications, 50, 171–178.
Kalladan R, Worch S, Rolletschek
H, Harshavardhan V T, Kuntze L, Seiler C, Sreenivasulu N, Röder M S. 2013.
Identification of quantitative trait loci contributing to yield and seed
quality parameters under terminal drought in barley advanced backcross lines. Molecular Breeding, 32, 71–90.
Kandemir N, Jones B L, Wesenberg
D M, Ullrich S E, Kleinhofs A. 2000. Marker-assisted analysis of three grain yield
QTL in barley (Hordeum vulgare L.) using near isogenic lines. Molecular Breeding, 6, 157–167.
Kebede A, Kang M S, Bekele E.
2019. Advances in mechanisms of drought tolerance in crops, with emphasis on
barley. In: Sparks D L, ed., Advances in Agronomy. vol.
156. Academic Press, Cambridge, USA. pp. 265–314.
von Korff M, Grando S, Del Greco
A, This D, Baum M, Ceccarelli S. 2008. Quantitative trait loci associated with
adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653–669.
Kosová K, Vitámvás P, Urban M O,
Kholová J, Prášil I T. 2014. Breeding for enhanced drought resistance in barley
and wheat-drought-associated traits, genetic resources and their potential
utilization in breeding programmes. Czech Journal of Genetics and Plant Breeding, 50, 247–261.
Kumar S, Patial M, Sharma R.
2020. Efficient barley breeding. In: Gosal S S, Wani S H, eds., Accelerated Plant Breeding. Cereal Crops. vol. 1. Springer
Nature, Switzerland. pp. 309–364.
Lakew B, Henry R J, Eglinton J,
Baum M, Ceccarelli S, Grando S. 2013. SSR analysis of introgression of drought
tolerance from the genome of Hordeum spontaneum into cultivated
barley (Hordeum vulgare ssp. vulgare). Euphytica, 191,
231–243.
Lande R, Thompson R. 1990.
Efficiency of marker-assisted selection in the improvement of quantitative
traits. Genetics, 124, 743–756.
Landi S, Capasso G, Ben Azaiez F
E, Jallouli S, Ayadi S, Trifa Y, Esposito S. 2019. Different roles of heat
shock proteins (70 kDa) during abiotic stresses in barley (Hordeum vulgare)
genotypes. Plants, 8, 248.
Li C, Zhang G, Lance R. 2007.
Recent advances in breeding barley for drought and saline stress tolerance. In:
Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. pp. 603–626.
Li Y C, Korol A B, Fahima T, Nevo
E. 2004. Microsatellites within genes: Structure, function, and evolution. Molecular Biology and Evolution, 21, 991–1007.
Liao P Y, Lee K H. 2010. From
SNPs to functional polymorphism: The insight into biotechnology applications. Biochemical Engineering Journal, 9, 149–158.
Liu J, Osbourn A, Ma P. 2015. MYB
transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant, 8, 689–708.
Lorenz A J, Hamblin M T, Jannink
J L. 2010. Performance of Single nucleotide polymorphisms versus haplotypes for
genome-wide association analysis in barley. PLoS ONE, 5,
e14079.
Mahalingam R, Duhan N, Kaundal R,
Smertenko A, Nazarov T, Bregitzer P. 2022. Heat and drought induced
transcriptomic changes in barley varieties with contrasting stress response
phenotypes. Frontiers in Plant Science, 13,
1066421.
Makhtoum S, Sabouri H, Gholizadeh
A, Ahangar L, Katouzi M. 2022a. QTLs controlling physiological and
morphological traits of barley (Hordeum vulgare L.) seedlings
under salinity, drought, and normal conditions. BioTech, 11, 26.
Makhtoum S, Sabouri H, Gholizadeh
A, Ahangar L, Katouzi M, Mastinu A. 2022b. Mapping of QTLs controlling barley
agronomic traits (Hordeum vulgare L.) under normal conditions and
drought and salinity stress at reproductive stage. Plant Gene, 31,
100375.
Mammadov J, Aggarwal R, Buyyarapu
R, Kumpatla S. 2012. SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 2012, 728398.
Marok M A, Marok-Alim D, Rey P.
2021. Contribution of functional genomics to identify the genetic basis of
water-deficit tolerance in barley and the related molecular mechanisms. Journal of Agronomy and Crop Science, 207,
913–935.
Mascher M, Wicker T, Jenkins J,
Plott C, Lux T, Koh C S, Ens J, Gundlach H, Boston L B, Tulpova Z, Holden S,
Hernandez-Pinzon I, Scholz U, Mayer K F X, Spannag M, Pozniak C J, Sharpe A G,
Simkova H, Moscou M J, Grimwood J, et al. 2021. Long-read sequence
assembly: A technical evaluation in barley. Plant Cell, 33,
1888–1906.
de Mezer M, Turska-Taraska A,
Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T. 2014. Differential
physiological and molecular response of barley genotypes to water deficit. Plant Physiology and Biochemistry, 80, 234–248.
Mikołajczak K, Ogrodowicz P,
Surma M, Adamski T, Kuczyńska A. 2016. Introgression of LTP2 gene
through marker assisted backcross in barley (Hordeum vulgare L.). Electronic Journal of Biotechnology, 24,
9–11.
Mohan M, Nair S, Bhagwat A, Krishna
T G, Yano M, Bhatia C R, Sasaki T. 1997. Genome mapping, molecular markers and
marker-assisted selection in crop plants. Molecular Breeding, 3,
87–103.
Mora F, Quitral Y, Matus I,
Russell J, Waugh R, Del-Pozo A. 2016. SNP-based QTL mapping of 15 complex
traits in barley under rain-fed and well-watered conditions by a mixed modeling
approach. Frontiers in Plant Science, 7,
00909.
Obsa B T, Eglinton J, Coventry S,
March T, Guillaume M, Le T P, Hayden M, Langridge P, Fleury D. 2017.
Quantitative trait loci for yield and grain plumpness relative to maturity in
three populations of barley (Hordeum vulgare L.) grown in a low
rain-fall environment. PLoS ONE, 12, e0178111.
Oyiga B C, Palczak J,
Wojciechowski T, Lynch J P, Naz A A, Léon J, Ballvora A. 2020. Genetic
components of root architecture and anatomy adjustments to water-deficit stress
in spring barley. Plant, Cell and Environment, 43,
692–711.
Park Y J, Lee J K, Kim N S. 2009.
Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity
and germplasm classification of minor crops. Molecules, 14,
4546–4569.
Pham A T, Maurer A, Pillen K,
Brien C, Dowling K, Berger B, Eglinton J K, March T J. 2019. Genome-wide
association of barley plant growth under drought stress using a nested association
mapping population. BMC Plant Biology, 19, 134.
Qiu C W, Ma Y, Liu W, Zhang S,
Wang Y, Cai S, Zhang G, Chater C C C, Chen Z H, Wu F. 2023. Genome resequencing
and transcriptome profiling reveal molecular evidence of tolerance to water
deficit in barley. Journal of Advanced Research, 49,
31–45.
Poczai P, Varga I, Laos M, Cseh
A, Bell N, Valkonen J P T, Hyvönen J. 2013. Advances in plant gene-targeted and
functional markers: A review. Plant Methods, 9, 6.
Rapacz M, Kościelniak J, Jurczyk
B, Adamska A, Wójcik M. 2010. Different patterns of physiological and molecular
response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). Journal of Agronomy and Crop Science, 196, 9–19.
Rasheed A, Hao Y, Xia X, Khan A,
Xu Y, Varshney R K, He Z. 2017. Crop breeding chips and genotyping platforms:
Progress, challenges, and perspectives. Molecular Plant, 10,
1047–1064.
Riaz A, Kanwal F, Börner A,
Pillen K, Dai F, Alqudah A M. 2021. Advances in genomics-based breeding of
barley: Molecular tools and genomic databases. Agronomy, 11, 894.
Sallam A, Amro A, Elakhdar A,
Dawood M F A, Moursi Y S, Baenziger P S. 2019. Marker-trait association for
grain weight of spring barley in well-watered and drought environments. Molecular Biology Reports, 46, 2907–2918.
Sallam A H, Endelman J B, Jannink
J L, Smith K P. 2015. Assessing genomic selection prediction accuracy in a
dynamic barley breeding population. Plant Genome, 8,
eplantgenome2014.05.0020.
Schmid K J, Thorwarth P. 2014.
Genomic selection in barley breeding. In: Kumlehn J, Stein N, eds., Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry. vol. 69.
Springer-Verlag, Berlin-Heidelberg. pp. 367–378.
Schmierer D A, Kandemir N, Kudrna
D A, Jones B L, Ullrich S E, Kleinhofs A. 2004. Molecular marker-assisted
selection for enhanced yield in malting barley. Molecular Breeding, 14, 463–473.
Shavrukov Y (ed). 2014. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Nova Science Publishers, New York. p. 243.
Shavrukov Y. 2016. CAPS markers
in plant biology. Russian Journal of Genetics. Applied Research, 6,
279–287.
Shi Q, Zhang Y, To V T, Shi J,
Zhang D, Cai W. 2020. Genome-wide characterization and expression analyses of
the auxin/indole-3-acetic acid (Aux/IAA) gene family in
barley (Hordeum vulgare L.). Scientific Reports, 10,
10242.
Suprunova T, Krugman T,
Distelfeld A, Fahima T, Nevo E, Korol A. 2007. Identification of a novel gene (Hsdr4)
involved in water-stress tolerance in wild barley. Plant Molecular Biology, 64, 17–34.
Swamy B M, Vikram P, Dixit S,
Ahmed H U, Kumar A. 2011. Meta-analysis of grain yield QTL identified during
agricultural drought in grasses showed consensus. BMC Genomics, 12,
319.
Szira F, Börner A, Neumann K,
Nezhad K Z, Galiba G, Bálint A F. 2011. Could EST-based markers be used for the
marker-assisted selection of drought tolerant barley (Hordeum vulgare)
lines? Euphytica, 178, 373–391.
Talamè V, Ozturk N Z, Bohnert H
J, Tuberosa R. 2007. Barley transcript profiles under dehydration shock and
drought stress treatments: A comparative analysis. Journal of Experimental Botany, 58, 229–240.
Tarawneh R A, Alqudah A M, Nagel
M, Börner A. 2020. Genome-wide association mapping reveals putative candidate
genes for drought tolerance in barley. Environmental and Experimental Botany, 180, 104237.
Tardieu F. 2012. Any trait or
trait-related allele can confer drought tolerance: just design the right
drought scenario. Journal of Experimental Botany, 63,
25–31.
Teulat B, Merah O, Souyris I,
This D. 2001. QTLs for agronomic traits from Mediterranean barley progeny grown
in several environments. Theoretical and Applied Genetics, 103, 774–787.
Thabet S G, Moursi Y S, Karam M
A, Börner A, Alqudah A M. 2020. Natural variation uncovers candidate genes for
barley spikelet number and grain yield under drought stress. Genes, 11,
533.
Thabet S G, Moursi Y S, Karam M
A, Graner A, Alqudah A M. 2018. Genetic basis of drought tolerance during seed
germination in barley. PLoS ONE, 13, e0206682.
Tondelli A, Francia E, Visioni A,
Comadran J, Mastrangelo A M, Akar T, Al-Yassin A, Ceccarelli S, Grando S,
Benbelkacem A, van Eeuwijk F A, Thomas W T B, Stanca A M, Romagosa I, Pecchioni
N. 2014. QTLs for barley yield adaptation to Mediterranean environments in the
‘Nure’ × ‘Tremois’ biparental population. Euphytica, 197, 73–86.
Varshney R K, Paulo M J, Grando
S, van Eeuwijk F A, Keizer L C P, Guo P, Ceccarelli S, Kilian A, Baum M, Graner
A. 2012. Genome wide association analyses for drought tolerance related traits
in barley (Hordeum vulgare L.). Field Crops Research, 126, 171–180.
Vieira M L C, Santini L, Diniz A
L, Munhoz C F. 2016. Microsatellite markers: What they mean and why they are so
useful. Genetics and Molecular Biology, 39,
312–328.
Wehner G, Balko C, Humbeck K,
Zyprian E, Ordon F. 2016. Expression profiling of genes involved in drought
stress and leaf senescence in juvenile barley. BMC Plant Biology, 16, 3.
Wehner G G, Balko C C, Enders M
M, Humbeck K K, Ordon F F. 2015. Identification of genomic regions involved in
tolerance to drought stress and drought stress induced leaf senescence in
juvenile barley. BMC Plant Biology, 15, 125.
Xia Y, Li R, Bai G, Siddique K H
M, Varshney R K, Baum M, Yan G. 2017. Genetic variations of HvP5CS1 and
their association with drought tolerance related traits in barley (Hordeum vulgare L.). Scientific Reports, 7, 7870.
Xing J, Zhao R, Zhang Q, Huang X,
Yin T, Zhang J, Xu B. 2022. Genome-wide identification and
characterization of the LpSAPK family genes in perennial ryegrass
highlight LpSAPK9 as an active regulator of drought stress. Frontiers in Plant Science, 13, 922564.
Zhang M,
Fu M M, Qiu C W, Cao F, Chen Z H, Zhang G, Wu F. 2019. Response of Tibetan wild
barley genotypes to drought stress and identification of quantitative trait
loci by genome-wide association analysis. International Journal of Molecular Science, 20, 791.
Zhang X,
Shabala S, Koutoulis A, Shabala L, Zhou M. 2017. Meta-analysis of major QTL for
abiotic stress tolerance in barley and implications for barley breeding. Planta, 245, 283–295.
|