Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 20-38    DOI: 10.1016/j.jia.2023.06.012
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)

Akmaral Baidyussen1#, Gulmira Khassanova1, 2, Maral Utebayev2, Satyvaldy Jatayev1, Rystay Kushanova3, Sholpan Khalbayeva3, Aigul Amangeldiyeva3, Raushan Yerzhebayeva3, Kulpash Bulatova3, Carly Schramm4, Peter Anderson4, Colin L. D. Jenkins4, Kathleen L. Soole4, Yuri Shavrukov4#

1 Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical Research University, Astana 010000, Kazakhstan

2 A.I. Barayev Research and Production Centre of Grain Farming, Shortandy 021601, Kazakhstan

3 Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty District 040909, Kazakhstan

4 College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

This review updates the present status of the field of molecular markers and marker-assisted selection (MAS), using the example of drought tolerance in barley.  The accuracy of selected quantitative trait loci (QTLs), candidate genes and suggested markers was assessed in the barley genome cv. Morex.  Six common strategies are described for molecular marker development, candidate gene identification and verification, and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.  These strategies are based on the following five principles: (1) Molecular markers are designated as genomic ‘tags’, and their ‘prediction’ is strongly dependent on their distance from a candidate gene on genetic or physical maps; (2) plants react differently under favourable and stressful conditions or depending on their stage of development; (3) each candidate gene must be verified by confirming its expression in the relevant conditions, e.g., drought; (4) the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield; and (5) the small number of molecular markers realized for MAS in breeding, from among the many studies targeting candidate genes, can be explained by the complex nature of drought stress, and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.

 


Keywords:  barley, candidate genes        drought tolerance        gene verification via expression        grain yield        marker-assisted selection (MAS)        molecular markers        quantitative trait loci (QTL)        strategy for MAS
  
Received: 23 February 2023   Accepted: 17 May 2023
Fund: 

This study was supported by Bolashak International Fellowships, Center for International Programs, Ministry of Education and Science, Kazakhstan; and Research Projects BR10764991 and BR10765000 supported by the Ministry of Agriculture, Kazakhstan and AP14869777 supported by the Ministry of Education and Science, Kazakhstan.

About author:  #Correspondence Yuri Shavrukov, Mobile: +61-4-3126-7861, Fax: +61-8-8201-3015, E-mail: yuri.shavrukov@flinders.edu.au; Akmaral Baidyussen, Mobile: +8-777-497-4922, E-mail: bai_akmaral@mail.ru

Cite this article: 

Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. 2024. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.). Journal of Integrative Agriculture, 23(1): 20-38.

Abed A, Belzile F. 2019. Comparing single-SNP, multi-SNP, and haplotype-based approaches in association studies for major traits in barley. Plant Genome, 12, 190036.

Abou-Elwafa S F. 2016. Association mapping for yield and yield-contributing traits in barley under drought conditions with genome-based SSR markers. Comptes Rendus Biologies, 339, 153–162.

Ali M M A E H, Mansour E, Awaad H A. 2021. Drought tolerance in some field crops: state of the art review. In: Awaad H, Abu-Hashim M, Negm A, eds., Mitigating Environmental Stresses for Agricultural Sustainability in Egypt. Springer, Cham. pp. 17–62.

Ambawat S, Sharma P, Yadav N R, Yadav R C. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19, 307–321.

Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta N K, Gupta S, Schramm C, Anderson P, Jenkins C L D, Soole K L, Langridge P, Shavrukov Y. 2021. Expression of specific alleles of Zinc-finger transcription factors, HvSAP8 and HvSAP16, and corresponding SNP markers, are associated with drought tolerance in barley populations. International Journal of Molecular Sciences, 22, 12156.

Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S. 2003. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41.1. Theoretical and Applied Genetics, 107, 1215–1225.

Baum M, von Korff M, Guo P, Lakew B, Hamwieh A, Lababidi S, Udupa S M, Sayed H, Choumane W, Grando S, Ceccarelli S. 2007. Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney R K, Tuberosa R, eds., Genomics Assisted Crop Improvement. Genomics Applications in Crops. vol. 2. Springer. pp. 51–79.

Bedada G, Westerbergh A, Müller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid K J. 2014. Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics, 15, 995.

Ben-Ari G, Lavi U. 2012. Marker-assisted selection in plant breeding. In: Altman A, Hasegawa P M, eds., Plant Biotechnology and Agriculture. Prospects for the 21st Century. Elsevier, Amsterdam. pp. 163–183.

Bernardo R. 2004. What proportion of declared QTL in plants are false? Theoretical and Applied Genetics, 109, 419–424.

Boopathi N M. 2020. Genetic Mapping and Marker Assisted Selection. Basics, Practice and Benefits. Springer-Nature, Singapore. p. 504.

Cantalapiedra C P, García-Pereira M J, Gracia M P, Igartua E, Casas A M, Contreras-Moreira B. 2017. Large differences in gene expression responses to drought and heat stress between elite barley cultivar Scarlett and a Spanish landrace. Frontiers in Plant Science, 8, 647.

Cheng A, Chai H H, Ho W K, Bamba A S A, Feldman A, Kendabie P, Halim R A, Tanzi A, Mayes S, Massawe F. 2017. Molecular marker technology for genetic improvement of underutilised crops. In: Abdullah S N A, Chai-Ling H, Wagstaff C, eds., Crop Improvement. Springer, Cham. pp. 47–70.

Chopra S. 2014. Techniques and tools of modern plant breeding: Field crops. In: Ricroch A, Chopra S, Fleischer S J, eds., Plant Biotechnology: Experience and Future Prospects. Springer, Cham. pp. 25–33.

Close T J, Bhat P R, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J T, Wanamaker S, Bozdag S, Roose M L, Moscou M J, Chao S, Varshney R K, Szűcs P, Sato K, Hayes P M, Matthews D E, Kleinhofs A, et al. 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.

Cobb J N, Biswas P S, Platten J D. 2019. Back to the future: Revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 132, 647–667.

Comadran J, Russell J R, van Eeuwijk F A, Ceccarelli S, Grando S, Baum M, Stanca A M, Pecchioni N, Mastrangelo A M, Akar T, Al-Yassin A, Benbelkacem A. 2008. Mapping adaptation of barley to droughted environments. Euphytica, 161, 35–45.

Czajkowska B I, Jones G, Brown T A. 2019. Diversity of a wall-associated kinase gene in wild and cultivated barley. PLoS ONE, 14, e0218526.

Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. 2019. Non-invasive phenotyping reveals genomic regions involved in pre-anthesis drought tolerance and recovery in spring barley. Frontiers in Plant Science, 10, 1307.

Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R. 2011. Genetic dissection of barley morphology and development. Plant Physiology, 155, 617–627.

Elakhdar A, Solanki S, Kubo T, Abed A, Elakhdar I, Khedr R, Hamwieh A, Capo-chichi L J A, Abdelsattar M, Franckowiak J D, Qualset C O. 2022. Barley with improved drought tolerance: Challenges and perspectives. Environmental and Experimental Botany, 201, 104965.

Elbasyoni I S, Eltaher S, Morsy S, Mashaheet A M, Abdallah A M, Ali H G, Mariey S A, Baenziger P S, Frels K. 2022. Novel single-nucleotide variants for morpho-physiological traits involved in enhancing drought stress tolerance in barley. Plants, 11, 3072.

Fan Y, Shabala S, Ma Y, Xu R, Zhou M. 2015. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics, 16, 43.

Fatemi F, Kianersi F, Pour-Aboughadareh A, Poczai P, Jadidi O. 2022. Overview of identified genomic regions associated with various agronomic and physiological traits in barley under abiotic stresses. Applied Sciences, 12, 5189.

Fiust A, Rapacz M, Wójcik-Jagła M, Tyrka M. 2015. Development of DArT-based PCR markers for selecting drought-tolerant spring barley. Journal of Applied Genetics, 56, 299–309.

Ghatak A, Chaturvedi P, Weckwerth W. 2017. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Frontiers in Plant Science, 8, 757.

Gous P W, Hickey L, Christopher J T, Franckowiak J, Fox G P. 2016. Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica, 207, 305–317.

Grover A, Sharma P C. 2016. Development and use of molecular markers: Past and present. Critical Reviews in Biotechnology, 36, 290–302.

Gudys K, Guzy-Wrobelska J, Janiak A, Dziurka M A, Ostrowska A, Hura K, Jurczyk B, Zmuda K, Grzybkowska D, Srobka J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikolajczak K, Ogrodowicz P, Krystkowiak K, Kuczynska A, Krajewski P, Szarejko I. 2018. Prioritization of candidate genes in QTL regions for physiological and biochemical traits underlying drought response in barley (Hordeum vulgare L.). Frontiers in Plant Science, 9, 769.

Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney R, Graner A, Valkoun J. 2009. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60, 3531–3544.

Gürel F, Öztürk Z N, Uçarlı C, Rosellini D. 2016. Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science, 7, 1137.

Harb A M, Samarah N H. 2015. Physiological and molecular responses to controlled severe drought in two barley (Hordeum vulgare L.) genotypes. Journal of Crop Improvement, 29, 82–94.

Hayden M, Tabone T, Nguyen T, Coventry S, Keiper F, Fox R, Chalmers K, Mather D, Eglinton J. 2010. An informative set of SNP markers for molecular characterisation of Australian barley germplasm. Crop Pasture Science, 61, 70–83.

Henry R J (ed). 2013. Molecular Markers in Plants. Wiley-Blackwell, Ames, USA. p. 216.

Honsdorf N, March T J, Pillen K. 2017. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLoS ONE, 12, e0185983.

Hu H, Xiong L. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715–741.

Hübner S, Korol A B, Schmid K J. 2015. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biology, 15, 134.

Huq A, Akter S, Nou S, Kim H T, Jung Y J, Kang K K. 2016. Identification of functional SNPs in genes and their effects on plant phenotypes. Journal of Plant Biotechnology, 43, 1–11.

IBGSC (International Barley Sequencing Consortium). 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711–716.

Igartua E, Mansour E, Cantalapiedra C P, Contreras-Moreira B, Gracia M P, Fuster P, Escribano J, Molina-Cano J L, Moralejo M, Ciudad F J, Thomas W T B, Karsai I, Casas A M. 2015. Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information. Molecular Breeding, 35, 11.

Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A. 2009. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23, 365–376.

Jabbari M, Fakheri B A, Aghnoum R, Darvishzadeh R, Mahdi N N, Ataei R, Koochakpour Z, Razi M. 2022. Identification of DNA markers associated with phenological traits in spring barley (Hordeum vulgare L.) under drought stress conditions. Cereal Research Communications, 50, 171–178.

Kalladan R, Worch S, Rolletschek H, Harshavardhan V T, Kuntze L, Seiler C, Sreenivasulu N, Röder M S. 2013. Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Molecular Breeding, 32, 71–90.

Kandemir N, Jones B L, Wesenberg D M, Ullrich S E, Kleinhofs A. 2000. Marker-assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Molecular Breeding, 6, 157–167.

Kebede A, Kang M S, Bekele E. 2019. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. In: Sparks D L, ed., Advances in Agronomy. vol. 156. Academic Press, Cambridge, USA. pp. 265–314.

von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S. 2008. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653–669.

Kosová K, Vitámvás P, Urban M O, Kholová J, Prášil I T. 2014. Breeding for enhanced drought resistance in barley and wheat-drought-associated traits, genetic resources and their potential utilization in breeding programmes. Czech Journal of Genetics and Plant Breeding, 50, 247–261.

Kumar S, Patial M, Sharma R. 2020. Efficient barley breeding. In: Gosal S S, Wani S H, eds., Accelerated Plant Breeding. Cereal Crops. vol. 1. Springer Nature, Switzerland. pp. 309–364.

Lakew B, Henry R J, Eglinton J, Baum M, Ceccarelli S, Grando S. 2013. SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp. vulgare). Euphytica, 191, 231–243.

Lande R, Thompson R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124, 743–756.

Landi S, Capasso G, Ben Azaiez F E, Jallouli S, Ayadi S, Trifa Y, Esposito S. 2019. Different roles of heat shock proteins (70 kDa) during abiotic stresses in barley (Hordeum vulgare) genotypes. Plants, 8, 248.

Li C, Zhang G, Lance R. 2007. Recent advances in breeding barley for drought and saline stress tolerance. In: Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. pp. 603–626.

Li Y C, Korol A B, Fahima T, Nevo E. 2004. Microsatellites within genes: Structure, function, and evolution. Molecular Biology and Evolution, 21, 991–1007.

Liao P Y, Lee K H. 2010. From SNPs to functional polymorphism: The insight into biotechnology applications. Biochemical Engineering Journal, 9, 149–158.

Liu J, Osbourn A, Ma P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant, 8, 689–708.

Lorenz A J, Hamblin M T, Jannink J L. 2010. Performance of Single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS ONE, 5, e14079.

Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. 2022. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. Frontiers in Plant Science, 13, 1066421.

Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M. 2022a. QTLs controlling physiological and morphological traits of barley (Hordeum vulgare L.) seedlings under salinity, drought, and normal conditions. BioTech, 11, 26.

Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M, Mastinu A. 2022b. Mapping of QTLs controlling barley agronomic traits (Hordeum vulgare L.) under normal conditions and drought and salinity stress at reproductive stage. Plant Gene, 31, 100375.

Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S. 2012. SNP markers and their impact on plant breeding. International Journal of Plant Genomics, 2012, 728398.

Marok M A, Marok-Alim D, Rey P. 2021. Contribution of functional genomics to identify the genetic basis of water-deficit tolerance in barley and the related molecular mechanisms. Journal of Agronomy and Crop Science, 207, 913–935.

Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh C S, Ens J, Gundlach H, Boston L B, Tulpova Z, Holden S, Hernandez-Pinzon I, Scholz U, Mayer K F X, Spannag M, Pozniak C J, Sharpe A G, Simkova H, Moscou M J, Grimwood J, et al. 2021. Long-read sequence assembly: A technical evaluation in barley. Plant Cell, 33, 1888–1906.

de Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T. 2014. Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiology and Biochemistry, 80, 234–248.

Mikołajczak K, Ogrodowicz P, Surma M, Adamski T, Kuczyńska A. 2016. Introgression of LTP2 gene through marker assisted backcross in barley (Hordeum vulgare L.). Electronic Journal of Biotechnology, 24, 9–11.

Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3, 87–103.

Mora F, Quitral Y, Matus I, Russell J, Waugh R, Del-Pozo A. 2016. SNP-based QTL mapping of 15 complex traits in barley under rain-fed and well-watered conditions by a mixed modeling approach. Frontiers in Plant Science, 7, 00909.

Obsa B T, Eglinton J, Coventry S, March T, Guillaume M, Le T P, Hayden M, Langridge P, Fleury D. 2017. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment. PLoS ONE, 12, e0178111.

Oyiga B C, Palczak J, Wojciechowski T, Lynch J P, Naz A A, Léon J, Ballvora A. 2020. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant, Cell and Environment, 43, 692–711.

Park Y J, Lee J K, Kim N S. 2009. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules, 14, 4546–4569.

Pham A T, Maurer A, Pillen K, Brien C, Dowling K, Berger B, Eglinton J K, March T J. 2019. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biology, 19, 134.

Qiu C W, Ma Y, Liu W, Zhang S, Wang Y, Cai S, Zhang G, Chater C C C, Chen Z H, Wu F. 2023. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. Journal of Advanced Research, 49, 31–45.

Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen J P T, Hyvönen J. 2013. Advances in plant gene-targeted and functional markers: A review. Plant Methods, 9, 6.

Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M. 2010. Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). Journal of Agronomy and Crop Science, 196, 9–19.

Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney R K, He Z. 2017. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 10, 1047–1064.

Riaz A, Kanwal F, Börner A, Pillen K, Dai F, Alqudah A M. 2021. Advances in genomics-based breeding of barley: Molecular tools and genomic databases. Agronomy, 11, 894.

Sallam A, Amro A, Elakhdar A, Dawood M F A, Moursi Y S, Baenziger P S. 2019. Marker-trait association for grain weight of spring barley in well-watered and drought environments. Molecular Biology Reports, 46, 2907–2918.

Sallam A H, Endelman J B, Jannink J L, Smith K P. 2015. Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant Genome, 8, eplantgenome2014.05.0020.

Schmid K J, Thorwarth P. 2014. Genomic selection in barley breeding. In: Kumlehn J, Stein N, eds., Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry. vol. 69. Springer-Verlag, Berlin-Heidelberg. pp. 367–378.

Schmierer D A, Kandemir N, Kudrna D A, Jones B L, Ullrich S E, Kleinhofs A. 2004. Molecular marker-assisted selection for enhanced yield in malting barley. Molecular Breeding, 14, 463–473.

Shavrukov Y (ed). 2014. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology. Nova Science Publishers, New York. p. 243.

Shavrukov Y. 2016. CAPS markers in plant biology. Russian Journal of Genetics. Applied Research, 6, 279–287.

Shi Q, Zhang Y, To V T, Shi J, Zhang D, Cai W. 2020. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in barley (Hordeum vulgare L.). Scientific Reports, 10, 10242.

Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. 2007. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology, 64, 17–34.

Swamy B M, Vikram P, Dixit S, Ahmed H U, Kumar A. 2011. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics, 12, 319.

Szira F, Börner A, Neumann K, Nezhad K Z, Galiba G, Bálint A F. 2011. Could EST-based markers be used for the marker-assisted selection of drought tolerant barley (Hordeum vulgare) lines? Euphytica, 178, 373–391.

Talamè V, Ozturk N Z, Bohnert H J, Tuberosa R. 2007. Barley transcript profiles under dehydration shock and drought stress treatments: A comparative analysis. Journal of Experimental Botany, 58, 229–240.

Tarawneh R A, Alqudah A M, Nagel M, Börner A. 2020. Genome-wide association mapping reveals putative candidate genes for drought tolerance in barley. Environmental and Experimental Botany, 180, 104237.

Tardieu F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany, 63, 25–31.

Teulat B, Merah O, Souyris I, This D. 2001. QTLs for agronomic traits from Mediterranean barley progeny grown in several environments. Theoretical and Applied Genetics, 103, 774–787.

Thabet S G, Moursi Y S, Karam M A, Börner A, Alqudah A M. 2020. Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Genes, 11, 533.

Thabet S G, Moursi Y S, Karam M A, Graner A, Alqudah A M. 2018. Genetic basis of drought tolerance during seed germination in barley. PLoS ONE, 13, e0206682.

Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo A M, Akar T, Al-Yassin A, Ceccarelli S, Grando S, Benbelkacem A, van Eeuwijk F A, Thomas W T B, Stanca A M, Romagosa I, Pecchioni N. 2014. QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica, 197, 73–86.

Varshney R K, Paulo M J, Grando S, van Eeuwijk F A, Keizer L C P, Guo P, Ceccarelli S, Kilian A, Baum M, Graner A. 2012. Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Research, 126, 171–180.

Vieira M L C, Santini L, Diniz A L, Munhoz C F. 2016. Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39, 312–328.

Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F. 2016. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biology, 16, 3.

Wehner G G, Balko C C, Enders M M, Humbeck K K, Ordon F F. 2015. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biology, 15, 125.

Xia Y, Li R, Bai G, Siddique K H M, Varshney R K, Baum M, Yan G. 2017. Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Scientific Reports, 7, 7870.

Xing J, Zhao R, Zhang Q, Huang X, Yin T, Zhang J, Xu B. 2022. Genome-wide identification and characterization of the LpSAPK family genes in perennial ryegrass highlight LpSAPK9 as an active regulator of drought stress. Frontiers in Plant Science, 13, 922564.

Zhang M, Fu M M, Qiu C W, Cao F, Chen Z H, Zhang G, Wu F. 2019. Response of Tibetan wild barley genotypes to drought stress and identification of quantitative trait loci by genome-wide association analysis. International Journal of Molecular Science, 20, 791.

Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M. 2017. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta, 245, 283–295.



[1] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[2] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[3] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[4] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[5] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[6] YIN Wen, FAN Zhi-long, HU Fa-long, FAN Hong, HE Wei, SUN Ya-li, WANG Feng, ZHAO Cai, YU Ai-zhong, CHAI Qiang. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3416-3429.
[7] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[8] WANG Rui, WANG Ying, HU Ya-xian, DANG Ting-hui, GUO Sheng-li. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3003-3011.
[9] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
No Suggested Reading articles found!