Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (11): 2837-2848    DOI: 10.1016/S2095-3119(20)63279-8
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Transgenic japonica rice expressing the cry1C gene is resistant to striped stem borers in Northeast China
JIN Yong-mei, MA Rui, YU Zhi-jing, LIN Xiu-feng
Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Changchun 130033, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在东北地区,鳞翅目害虫二化螟严重影响水稻产量和品质。本研究利用农杆菌介导法,将Bt抗虫基因cry1C导入到东北粳稻品种吉粳88。利用分子检测和抗Basta发芽试验,从126个转cry1C基因独立转化体中筛选出16个单拷贝纯合转基因株系。通过对cry1C蛋白水平、抗虫性和农艺性状的评价,最终获得4个高抗二化螟且产量高于非转基因对照品种的cry1C转基因株系,JL16、JL23、JL41和JL42。T-DNA侧翼序列分析结果表明,在转基因株系JL42中cry1C基因插入到第11号染色体基因间区,可推测未发生位置效应。本研究培育出4个抗二化螟转基因粳稻品系,为水稻抗虫育种提供了理论基础与新种质资源。




Abstract  
Rice production and quality are seriously affected by the lepidopteran pest, striped stem borer (SSB), in Northeast China. In this study, a synthetic cry1C gene encoding Bacillus thuringiensis (Bt) δ-endotoxin, which is toxic to lepidopteran pest, was transformed into a japonica rice variety (Jigeng 88) in Northeast China by Agrobacterium-mediated transformation.  Through molecular detection and the Basta resistance germination assay, a total of 16 single-copy homozygous transgenic lines were obtained from 126 independent transformants expressing cry1C.  Finally, four cry1C-transgenic lines (JL16, JL23, JL41, and JL42) were selected by evaluation of the Cry1C protein level, insect-resistance and agronomic traits.  The cry1C-transgenic lines had higher resistance to SSB and higher yield compared with non-transgenic (NT) control plants.  T-DNA flanking sequence analysis of the transgenic line JL42 showed that the cry1C gene was inserted into the intergenic region of chromosome 11, indicating that its insertion may not interfere with the genes near insertion site.  In summary, this study developed four cry1C-transgenic japonica rice lines with high insect resistance and high yield.  They can be used as insect-resistant germplasm materials to overcome the problem of rice yield reduction caused by SSB and reduce the use of pesticides in Northeast China.
Keywords:  striped stem borer        insect resistance        cry1C gene        transgenic japonica rice        T-DNA flanking sequence  
Received: 11 March 2020   Accepted:
Fund: This research was supported by grants from the Jilin Provincial Agricultural Science and Technology Innovation Project in China (CXGC2021TD014) and the National Major Project of Breeding for Genetically Modified Organisms in China (2016ZX08001001-001-007).
Corresponding Authors:  Correspondence LIN Xiu-feng, Tel/Fax: +86-431-87063078, E-mail: linxiufeng8581@163.com   
About author:  JIN Yong-mei, E-mail: ymjin0303@163.com;

Cite this article: 

JIN Yong-mei, MA Rui, YU Zhi-jing, LIN Xiu-feng. 2021. Transgenic japonica rice expressing the cry1C gene is resistant to striped stem borers in Northeast China. Journal of Integrative Agriculture, 20(11): 2837-2848.

Alcantara E P, Aguda R M, Curtiss A, Dean D H, Cohen M B. 2004. Bacillus thuringiensis δ-endotoxin binding to brush border membrane vesicles of rice stemborers. Archives of Insect Biochemistry and Physiology, 55, 169–177.
Bashir K, Husnain T, Fatira T, Latif Z, Mehdi S A, Riazuddin S. 2004. Field evaluation and risk assessment of transgenic indica basmati rice. Molecular Breeding, 13, 301–312.
Bravo A, Likivivatanavong S, Gill S S, Soberon M. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41, 423–431.
Buttimer C, McAuliffe O, Ross R P, Hill C, O’Mahony J, Coffey A. 2017. Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8, e33227.
Cao J, Tang J D, Strizhov N, Shelton A M, Earle E D. 1999. Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Molecular Breeding, 5, 131–141.
Chen H, Lin Y, Zhang Q. 2009. Review and prospect of transgenic rice research. Chinese Science Bulletin, 54, 4049–4068.
Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
Du D, Geng C, Zhang X, Zhang Z, Zheng Y, Zhang F, Lin Y, Qiu F. 2014. Transgenic maize lines expressing a cry1C gene are resistant to insect pests. Plant Molecular Biology Reporter, 32, 549–557.
Huang J, Hu R F, Qiao F B, Yin Y H, Liu H J, Huang Z R. 2015. Impact of insect-resistant GM rice on pesticide use and farmers’ health in China. Science China-Life Sciences, 58, 466–471.
Hiei Y, Kamari T. 2008. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 3, 824–834.
Jin Y M, Ma R, Yu Z, Wang L, Jiang W, Lin X. 2015. Development of lepidopteran pest-resistant transgenic japonica rice harboring a synthetic cry2A* gene. Journal of Integrative Agriculture, 14, 423–429.
Jin Y M, Piao R, Yan Y, Chen M, Wang L, He H, Liu X, Gao X A, Jiang W, Lin X. 2018. Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. International Journal of Genomics, 5480617.
Kim E H, Suh S C, Park B S, Shin K S, Kweon S J, Han E J, Park S H, Kim Y S, Kim J K. 2009. Chloroplast targeted expression of synthetic Cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta, 230, 397–405.
Khana H, Raina S K. 2002. Indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Research, 11, 411–423.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25, 1754–1760.
Li Y H, Peng Y F, Hallerman E M, Wu K M. 2014. Safety management and commercial use of genetically modi?ed crops in China. Plant Cell Reports, 33, 565–573.
Van Lijsebetens M, Vanderhaeghen R, Van Montagu M. 1991. Insertional mutagenesis in Arabidopsis thaliana isolation of a TDNA-linked mutation that alters leaf morphology. Theoretical and Applied Genetics, 81, 277–284.
Maqbool S, Christou P. 1999. Mutiple traits of agronomic importance in transgenic indica rice plant: Analysis of transgenene integration patterns, expression levels and stability. Molecular Breeding, 5, 471–480.
Maqbool S B, Riazuddin S, Loc N T, Gatehouse A M R, Gatehouse J A, Christou P. 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding, 7, 85–93.
Mohammed S, Samad A A, Rahmat Z. 2019. Agrobacterium-mediated transformation of rice: Constraints and possible solutions. Rice Science, 26, 133–146.
Sood P, Bhattacharya A, Sood A. 2011. Problems and possibilities of monocot transformation. Biological Plantarum, 55, 1–15.
Stam M, Mol J N, Kooter J M. 1997. The silence of genes in transgenic plants. Annals of Botany, 79, 3–12.
Strizhov N, Keller M, Mathr J, Koncz K Z, Bosch D, Prdovsky E, Schell J, Sneh B, Koncz C, Zilberstein A. 1996. A synthetic cry1C gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfafa and tobacco. Proceeding of the National Academy of Sciences of the United States of America, 93, 15012–15017.
Taline E, Florence P, Hervé V. 2005. Arabidopsis RPA2: A genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Current Biology, 25, 1919–1925.
Tang W, Chen H, Xu C G, Li X H, Lin Y J, Zhang Q F. 2006. Development of insect-resistant transgenic indica rice with a synthetic Cry1C gene. Molecular Breeding, 18, 1–10.
Tu J, Zhang G, Datta K. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nature Biotechnology, 8, 1101–1104.
Xu C, Cheng J, Lin H, Lin C, Gao J, Shen Z. 2018. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance. Scientific Reports, 8, 15788.
Ye G Y, Shu Q Y, Yao H W, Cui H R, Cheng X Y, Hu C, Xia Y W, Gao M W, Altosaar I. 2001. Field evaluation of resistance of transgenic rice containing a synthetic Cry1Ab gene from Bacillus thuringiensis Berliner to two stem borers. Journal of Economic Entomology, 94, 271–276.
Ye R, Huang H, Yang Z, Chen T, Liu L, Li X, Chen H, Lin Y. 2008. Development of insect-resistant transgenic rice with Cry1C-free endosperm. Pest Management Science, 65, 1015–1020.
Zhao Q, Liu M, Zhang X, Lin C, Zhang Q, Shen Z. 2015. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene. Journal of Zhejiang University-Science B, 16, 824–831.
[1] Kashif NOOR, Hafiza Masooma Naseer CHEEMA, Asif Ali KHAN, Rao Sohail Ahmad KHAN. Expression profiling of transgenes (Cry1Ac and Cry2A) in cotton genotypes under different genetic backgrounds[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2818-2832.
[2] JIN Yong-mei, MA Rui, YU Zhi-jing, WANG Ling, JIANG Wen-zhu, LIN Xiu-feng. Development of lepidopteran pest-resistant transgenic japonica rice harboring a synthetic cry2A* gene[J]. >Journal of Integrative Agriculture, 2015, 14(3): 423-429.
No Suggested Reading articles found!