Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (12): 3420-3433    DOI: 10.1016/j.jia.2022.08.056
Special Focus: Integrated Pest Management and Plant Health Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrated pest management programme for cereal blast fungus Magnaporthe oryza
ZHANG Hai-feng1Tofazzal ISLAM2, LIU Wen-de3

1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests of Ministry of Education, Nanjing 210095, P.R.China

2 Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

稻瘟病菌(Magnaporthe oryzae)是多种重要作物上极具破坏力的丝状病原真菌,能侵染包括水稻、小麦、小米、马唐等在内的50多种作物和杂草。由于其具有高度的寄主特异性,稻瘟病菌在田间进化出了大量的不同致病型菌株。其中稻属致病型菌株MoOM. oryzae Oryza)侵染水稻引起的稻瘟病是水稻上的毁灭性病害之一,每年给全球造成的水稻产量损失可养活六千万人口;麦属致病型菌株MoTM. oryzae Triticum)侵染小麦引起的麦瘟病是巴西、孟加拉、赞比亚等国家小麦生产上的重大威胁。由于抗病资源有限、抗病品种容易丧失抗性等原因,稻瘟病和麦瘟病的防控是水稻和小麦生产上的重大难题。因此,迫切需要建立和提出能高效控制这两种病害的田间综合防治策略。


综述重点总结了MoO菌株中已报道的无毒基因和水稻中的抗稻瘟病基因、及小麦中的抗麦瘟病基因,提出了以基于病原菌无毒基因型布局种植抗病品种为主,化学防治、生物防治和栽培管理为辅的稻瘟病、麦瘟病综合防治策略。同时,对稻瘟病和麦瘟病的综合防控提出了以下几点未来展望:1)加快鉴定和克隆水稻和小麦中的广谱抗病基因,培育和创制抗病品种;2)系统监测田间病原菌群体的无毒基因型,根据无毒基因型进行作物品种布局;3)应用基于微生物组的生物防治技术;4)建立病原菌的早期诊断与监测技术,并制定优化防治技术;5)应用快速诊断技术对植物进行检疫,阻止麦瘟病进一步扩散;6)建立及时、精准的病害预测预报体系;7)在已有技术基础上,建立和实施有效的病害综合防治策略,最大限度降低稻瘟病菌对水稻和小麦造成的损失。该综述从稻瘟病菌的分类、地理分布、寄主范围、生物学特征、病害症状及生态和经济影响等方面进行了系统总结,并提出了病害的综合防治策略。综述内容对人们全面、深入了解稻瘟病菌及开展稻瘟病和麦瘟病的综合防治工作具有重要的理论和实践指导意义。




Abstract  

Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.


Keywords:  rice blast        wheat blast       Magnaporthe oryzae       integrated pest management  
Received: 06 September 2021   Accepted: 10 February 2022
Fund: This work was supported by the National Natural Science Foundation of China (31871912, 31972229 and31772119), and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP). This work was also partly supported by grants from the Krishi Gobeshona Foundation (KGF), Bangladesh Project (TF50-C/17).
About author:  Correspondence LIU Wen-de, E-mail: liuwende@caas.cn;Tofazzal ISLAM, E-mail: tofazzalislam@bsmrau.edu.bd

Cite this article: 

ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. 2022. Integrated pest management programme for cereal blast fungus Magnaporthe oryza. Journal of Integrative Agriculture, 21(12): 3420-3433.

Anh V L, Anh N T, Tagle A G, Vy T T, Inoue Y, Takumi S, Chuma I, Tosa Y. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology, 105, 1568–1572.
Anh V L, Inoue Y, Asuke S, Vy T T P, Anh N T, Wang S Z, Chuma I, Tosa Y. 2018. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Molecular Plant Pathology, 19, 1252–1256.
Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. 2008. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 180, 2267–2276.
Ashizawa T, Zenbayashi K, Sonoda R. 2005. Effects of preinoculation with an avirulent isolate of Pyricularia grisea on infection and development of leaf blast lesions caused by virulent isolates on near-isogenic lines of Sasanishiki rice. Journal of General Plant Pathology, 71, 345–350.
Asuyma H. 1965. Morphology, taxonomy, host range and life-cycle of Pyricularia oryzae. In: Rice Blast Disease: Symposium Proceedings. The Johns Hopkins Press, Baltimore. pp. 9–22.
Barea G, Toledo J. 1996. Identificación y Zonificación de Piricularia o Brusone (Pyricularia oryzae) en el Cutivo del Trigo en el Dpto. de Santa Cruz. CIAT, Informe Técnico, Proyecto de Investigación Trigo, Santa Cruz, Bolivia. (in Spanish)
Berruyer R R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. 2003. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics, 107, 1139–1147.
Bevitori R, Ghini R. 2014. Rice blast disease in climate change times. Journal of Rice Research, 3, e111.
Bockus W W, Cruz C D, Stack J P, Valent B. 2015. Effect of seed-treatment fungicides on sporulation of Magnaporthe oryzae from wheat seed. Plant Disease Management Reports, 9, ST004.
Böhnert H U, Fuda I, Dioh W, Tharreau D, Notteghem J L, Lebrun M H. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 16, 2499.
Bonman J M, Khush G S, Nelson R J. 1992. Breeding rice for resistance to pests. Annual Review of Phytopathology, 30, 507–528.
Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 12, 2033–2045.
Cabrera M, Gutiérrez S. 2007. Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina. In: Jornada de Actualización en Enfermedades de Trigo. Instituto Fitotécnico de Santa Catalina Press, Lavallol, Buenos Aires. (in Spanish)
Castroagudin V L, Ceresini P C, de Oliveira S C, Reges J T A, Maciel J L N, Bonato A L N, Dorigan A F, McDonald B A. 2015. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology, 105, 284–294.
Ceresini P C, Castroagudín V L, Rodrigues F Á, Rios J A, Aucique-Pérez C E, Moreira S I, Alves E, Croll D, Maciel J L N. 2018. Wheat blast: Past, present, and future. Annual Review of Phytopathology, 56, 427–456.
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 25, 1463.
Chakraborty M, Mahmud N U, Gupta D R, Tareq F S, Shin H J, Islam T. 2020a. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Frontiers in Microbiology, 11, 665.
Chakraborty M, Mahmud N U, Muzahid ANM, Rabby S M F, Islam T. 2020b. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS ONE, 15, e0233665. 
Chakraborty M, Mahmud N U, Ullah C, Rahman M, Islam T. 2021. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Critical Reviews in Biotechnology, 41, 994–1022. 
Chakraborty M, Rabby S M F, Gupta D R, Rahman M, Paul S K, Mahmud N U, Rahat A A M, Jankuloski L, Islam T. 2022. Natural protein kinase inhibitors, staurosporine, and chelerythrine suppress wheat blast disease caused by Magnaporthe oryzae Triticum. Microorganisms, 10, 1186. 
Chauhan R S, Farman M, Zhang H B, Leong S. 2002. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Molecular Genetics and Genomics, 267, 603–612.
Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. 2011. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. Journal of Genetics and Genomics, 38, 209–216.
Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B B, Wang Y P, Zhao X F, Li S G, Zhu L H. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 46, 794–804.
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens, 7, e1002147.
Coakley S, Scherm H, Chakraborty S. 1999. Climate change and plant disease management. Annual Review of Phytopathology, 37, 399–426. 
Costanzo S, Jia Y. 2010. Sequence variation at the rice blast resistance gene Pi-km locus: Implications for the development of allele specific markers. Plant Science, 178, 523–530. 
Couch B C, Kohn L M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae from M. grisea. Mycologia, 94, 683–693.
Cruz C D, Magarey R D, Christie D N, Fowler G A, Fernandes J M, Bockus W W, Valent B, Stack J P. 2016. Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Disease, 100, 1979–1987.
Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan Q H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, et al. 2005. The genome sequence of the rice blast fungus. Magnaporthe grisea. Nature, 434, 980–986.
Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 355, 962–965.
Dixit S, Singh U M, Singh A K, Alam S, Venkateshwarlu C, Nachimuthu V V, Yadav S, Abbai R, Selvaraj R, Devi M N, Ramayya P J, Badri J, Ram T, Lakshmi J, Lakshmidevi G, Lrk J V, Padmakumari A P, Laha G S, Prasad M S, Seetalam M, et al. 2020. Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice, 13, 29.
Dutta S, Surovy M Z, Gupta D R, Mahmud N U, Chanclud E, Win J, Dutta S, Surovy M Z, Gupta D R, Mahmud N U, Chanclud E, Win J, Kamoun S, Islam M T. 2018. Genomic analyses reveal that biocontrol of wheat blast by Bacillus spp. may be linked with production of antimicrobial compounds and induced systemic resistance in host plants. Figshare, 17, 48.
Ebbole D J. 2007. Magnaporthe as a model for understanding host pathogen interactions. Annual Review of Phytopathology, 45, 437–456. 
Farman M, Peterson G, Chen L, Starnes J, Valent B, Bachi P, Murdock L, Hershman D, Pedley K, Fernandes J M, Bavaresco J. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Disease, 101, 684–692.
Fernandez J, Orth K. 2018. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology, 26, 582–597.
Fukuoka S, Kazutoshi O, Makoto K. 2007 Rice Blast Disease Gene Pi21, Resistance Gene Pi21 and Utilisation Thereof. Patent no. WO/2007/000880. PCT JP2006. National Institute of Agrobiological Sciences, Japan.
Giraldo M C, Valent B. 2013. Filamentous plant pathogen effectors in action. Nature Review Microbiology, 11, 800–814.
Gladieux P, Condon B, Ravel S, Soanes D, Maciel J L, Nhani A, Chen L, Terauchi R, Lebrun M H, Tharreau D, Mitchell T, Pedley K F, Valent B, Talbot N J, Farman M, Fournier E. 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio, 9, e01219–e01226.
Goodman B A, Newton A C. 2005. Effects of drought stress and its sudden relief on free radical processes in barley. Journal of the Science of Food and Agriculture, 85, 47–53. 
Goulart A, Paiva F. 2000. Perdas no rendimiento de grãos de trigo causada por Pyricularia grisea, nos anos de 1991 e 1992, no Mato Grosso do Sul. Sum. Phytopathology, 26, 279–282. (in Spanish)
Goulart A C P, Sousa P G, Urashima A S. 2007. Damage in wheat caused by infection of Pyricularia grisea. Summa Phytopathologica, 33, 358–363.
Gupta D R, Avila C S, Win J, Soanes D M, Ryder L S, Croll D, Bhattacharjee P, Hossain M S, Mahmud N U, Mehebub M S, Surovy M Z, Rahman M M, Talbot N J, Kamoun S, Islam M T. 2019. Cautionary notes on use of the MoT3 diagnostic assay for Magnaporthe oryzae wheat and rice blast isolates. Phytopathology, 109, 504–508.
Gupta D R, Surovy M Z, Mahmud N U, Gupta D R, Surovy M Z, Mahmud N U, Chakraborty M, Paul S K, Hossain M S, Bhattacharjee P, Mehebub M S, Rani K, Yeasmin R, Rahman M, Islam M T. 2020. Suitable methods for isolation, culture, storage and identification of wheat blast fungus Magnaporthe oryzae Triticum pathotype. Phytopathology Research, 2, 30. 
Hayashi K, Yoshida H. 2009. Refunctionalization of the ancient rice blast diseaseresistance gene Pit by the recruitment of aretrotransposon as a promoter. Plant Journal, 57, 413–425.
He M, Su J, Xu Y P, Chen J H, Chern M S, Lei M L, Qi T, Wang Z K, Ryder L S, Tang B Z, Osés-Ruiz M, Zhu K K, Cao Y Y, Yan X, Eisermann I, Luo Y, Li W T, Wang J, Yin J J, Lam S M, et al. 2020. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nature Microbiology, 5, 1565–1575.
Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical and Applied Genetics, 125, 1047–1055.
Igarashi S, Utimada C, Igarashi L, Kazuma A, Lopes R. 1986. Pyricularia sp. em trigo. I. Ocorrência de Pyricularia sp. no Estado do Paranà. Fitopatologia Brasileira, 11, 351–352. (in Portuguese)
Islam M T, Croll D, Gladieux P, Soanes D M, Persoons A, Bhattacharjee P, Hossain M S, Gupta D R, Rahman M M, Mahboob M G, Cook N, Salam M U, Surovy M Z, Sancho V B, Maciel J L N, NhaniJúnior A, Castroagudín V L, de Assis Reges J T, Ceresini P C, Ravel S, et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 14, 84.
Islam M T, Gupta D R, Hossain A, Roy K K, He X Y, Kabir M R, Singh P K, Khan M A R, Rahman M, Wang G L. 2020. Wheat blast: a new threat to food security. Phytopathology Research, 2, 28.
Islam M T, Kim K H, Choi J. 2019. Wheat blast in Bangladesh: The current situation and future impacts. Plant Pathology Journal, 35, 1–10.
Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal, 19, 4004.
Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theoretical and Applied Genetics, 115, 1163–1177.
de Jong J C, McCormack B J, Smirnoff N, Talbot N J. 1997. Glycerol generates turgor in rice blast. Nature, 389, 471–483.
Kang H X, Peng Y, Hua K Y, Deng Y F, Bellizzi M, Gupta D R, Mahmud N U, Urashima A S, Paul S K, Peterson G, Zhou Y L, Zhou X P, Islam M T, Wang G L. 2021. Rapid detection of wheat blast pathogen Magnaporthe oryzae Triticum pathotype using genome-specific primers and Cas12a-mediated technology. Engineering, 7, 1326–1335. 
Kang S, Sweigard J A, Valent B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant–Microbe Interactions, 8, 939–948.
Karthikeyan V, Gnanamanickam S. 2008. Biological control of setaria blast (Magnaporthe grisea) with bacterial strains. Crop Protection, 27, 263–267.
Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y, Nakayashiki H, Tosa Y, Mayama S, Mori N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. Journal of General Plant Pathology, 66, 30–47. 
Khang C H, Berruyer R, Giraldo M C, Kankanala P, Park S Y, Czymmek K, Kang S, Valent B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell, 22, 1388–1403.
Klaubauf S, Tharreau D, Fournier E, Groenewald J Z, Crous P W, de Vries R P, Marc-Henri L. 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology, 79, 85–120.
Kohli M, Mehta Y, Guzman E, Viedma L, Cubilla L. 2011. Pyricularia blast - A threat to wheat cultivation. Czech Journal Genetics and Plant Breeding, 47, 130–134.
Lee S Y, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. 2009. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics, 181, 1627–1638.
Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. 2007. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 177, 1871–1880.
Liu M X, Zhou B, Yang J, Hu J X, Li Y, Liu X Y, Wang W H, Qi Z Q, Zhang X, Zhang H F, Zheng X B, Wang P, Zhang Z G. 2019. Phosphorylation-guarded light-harvesting complex II contributes to broad resistance to rice blast. Proceedings of the National Academy of Sciences of the United States of America, 116, 17572–17577.
Liu W D, Wang G L. 2016. Plant innate immunity in rice: A defense against pathogen Infection. National Science Review, 3, 295–308.
Liu X Q, Lin F, Wang L, Pan Q H. 2007. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 176, 2541–2549.
Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopen-Llorea L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist, 230, 1578–1593.
Lv Q M, Xu X, Shang J J, Jiang G H, Pang Z Q, Zhou Z Z, Wang J, Liu Y, Li T, Li X B, Xu J C, Cheng Z K, Zhao X F, Li S G, Zhu L H. 2013. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 103, 594–599.
Ma J, Lei C L, Xu X T, Hao K, Wang J L, Cheng Z J, Ma X D, Ma J, Zhou K N, Zhang X, Guo X P, Wu F Q, Lin Q B, Wang C M, Zhai H Q, Wang H Y, Wan J M. 2015. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Molecular Plant–Microbe Interactions, 28, 558–568.
Malaker P K, Verma N C D, Tiwari T P, Collis W J, Duveiller E, Singh P K, Joshi A K, Singh R P, Braun H J, Peterson G L, Pedley K F, Ferma M L, Valent B. 2016. First report of wheat blast caused by Magnoporthe oryzae pathotype triticum in Bangladesh. Plant Disease, 100, 2330.
Mahmud N U, Gupta D R, Paul S K, Chakraborty M, Mehebub M S, Surovy M Z, Rabby S M F, Rahat A A M, Roy P C, Sohrawardy H, Amin M A, Masud M K, Ide Y, Yamauch Y, Hossain M S, Islam T. 2022. Daylight-driven rechargeable TiO2 nanocatalysts suppress wheat blast caused by Magnaporthe oryzae Triticum. Bulletin of the Chemical Society of Japan, 95, 1263–1271.
Manandhar H K, Lyngs Jørgensen H J, Mathur S B, Smedegaard-Petersen V. 1998. Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology, 88, 735–739.
Mottaleb K A, Singh P K, Sonder K, Kruseman G, Tiwari T P, Barma N C D, Malaker P K, Erenstein O. 2018. Threats of wheat blast to South Asia’s food security: an ex-ante analysis. PLoS ONE, 13, e0197555.
Mottaleb K A, Govindan V, Singh P K, Sonder K, He X Y, Singh R P, Joshi A K, Barma N C D, Kruseman G, Erenstein O. 2019. Economic benefits of blast-resistant biofortified wheat in Bangladesh: The case of BARI Gom 33. Crop Protection, 123, 45–58.
Mutiga S K, Rotich F, Were V M, Kimani J M, Mwongera D T, Mgonia E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria M J, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang G L, Correl J C, Talbot N J. 2021. Integrated strategies for durable rice blast resistance in sub-Saharan Africa. Plant Disease, 105, 2749–2770.
Nga N T T, Hau V T B, Tosa Y. 2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome, 52, 801–809.
Ohtaka N, Kawamata H, Narisawa K. 2008. Suppression of rice blast using freeze-killed mycelia of biocontrol fungal candidate MKP5111B. Journal of General Plant Pathology, 74, 101–108.
Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 12, 2019.
Ou S H. 1985. Rice Diseases. 2nd ed. Common Wealth Mycological Institute, Kew, UK. p. 380. 
Ou S H. 1972. Rice Diseases. Commonwealth Mycological Institute, Kew, Surrey, England. p. 368.
Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkuman P, Afzal A J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. 2012. The Magnaporthe oryzae effector AvrPizt targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 24, 4748–4762.
Paul S K, Chakraborty M, Rahman M, Gupta D R, Mahmud N U, Rahat A A M, Sarker A, Hannan M A, Rahman M M, Akanda A M, Ahmed J U, Islam T. Marine natural product antimycin A suppresses wheat blast disease caused by Magnaporthe oryzae Triticum. Journal of Fungi, 8, 618. 
Pennisi E. 2010. Armed and dangerous. Science, 327, 804–805.
Pieck M L, Ruck A, Farman M L, Peterson G L, Stack J P, Valent B, Pedley K F. 2017. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Disease, 101, 103–109.
Pordel A, Ravel S, Charriat F, Gladieux P, Cros-Arteil S, Milazzo J, Adreit H, Javan-Nikkhah M, Mirzadi-Gohari A, Moumeni A, Tharreau D. 2021. Tracing the origin and evolutionary history of Pyricularia oryzae infecting maize and barnyard grass. Phytopathology, 111, 128–136.
Prabavathy V R, Mathivanan N, Murugesan K. 2006. Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biological Control, 39, 313–319.
Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172, 1901–1914.
Ray S, Singh P, Gupata D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R. 2016. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Frontiers in Plant Science, 7, 1140.
Ribot C, Césari S, Abidi I, Chalvon V, Bournaud C, Vallet J, Lebrun M H, Morel J B, Kroj T. 2013. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal derived machinery. Plant Journal, 74, 1–12.
Saharan M S, Bhardwaj S C, Chatrath R, Sharma P, AChoudhary A K, Gupta R K. 2016. Wheat blast disease - An overview. Journal of Wheat Research, 8, 1–5.
Scardaci S C, Webster R K, Greer C A, Hill J E, Williams J F, Mutters R G, Brandon D M, McKenzie K S, Oster J J. 2003. Rice blast: A new disease in California. University of California-Davis: Agronomy Fact Sheet Series 1997-2.
Sesma A, Osbourn A E. 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.
Shang J J, Tao Y, Chen X W, Zou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang M J, Lu Z K, Xu J C, Cheng Z K, Wan J M, Zhu L H. 2009. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site–leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 182, 1303–1311.
Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti H C, Singh N K. 2005. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274, 569–5678.
Skamnioti P, Gurr S J. 2009. Against the grain: Safeguarding rice from rice blast disease. Trends in Biotechnology, 27, 141–150.
Su J, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y. 2015. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theoretical and Applied Genetics, 128, 2213–2225.
Surovy M Z, Gupta D R, Mahmud N U, Bhattacharjee P, Hossain M S, Mehebub M S, Rahaman M, Majumdar B C, Gupta D R, Islam T. 2020. Modulation of nutritional and biochemical properties of wheat grains infected by the blast fungus Magnaporthe oryzae Triticum pathotype. Frontiers in Microbiology, 11, 1174.
Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. 1995. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 7, 1221–1233.
Tagle A G, Chuma I, Tosa Y. 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology, 105, 495–499.
Takabayashi N, Tosa Y, Oh H S, Mayama S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology, 92, 1182–1188.
Takahashi A, Hayashi N, Miyao A, Hirochika H. 2010. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biology, 10, 175.
Talbot N J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177–202.
Talbot N J, Ebbole D J, Hamer J E. 1993. Identification and characterisation of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575–1590.
TeBeest D O, Guerber C, Ditmore M. 2007. Rice blast.  Journal of Plant Disease, 10, 109–113.
Tembo B, Mulenga R M, Sichilima S, M’Siska K K, Mwale M, Chikoti P C, Singh P K, He X, Pedley K F, Peterson G L, Singh R P, Braun H J. 2020. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE, 15, e0238724.
Tendulkar S, Saikumari Y K, Patel1 V, Raghotama S, Munshi T K, Balaram P, Chattoo B B. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. Journal of Applied Microbiology, 1, 2331–2339.
Toledo J. 2015. Tratamiento de semillas. In: Manual de Recomendaciones TÉCnicas-Cultivo de Trigo. Asociación de Productores de Oleaginosas y Trigo (ANAPO), Santa Cruz, Bolivia. p. 140. (in Spanish)
Tsukamoto H, Tsutsumi F, Onodera K, Yamada M, Fujimori T. 1999. Biological control of rice leaf blast with Exserohilum monoceras, a pathogen of Echinochloa species. Japanese Journal of Phytopathology, 65, 543–548.
Tufan H A, McGrann G R D, Magusin A, Morel J B, Miche L, Boyd L A. 2009. Wheat blast: histopathology and transcriptome reprogramming in response to adapted and nonadapted Magnaporthe isolates. New Phytologist, 184, 473–584.
Urashima A S, Lavorent N A, Goulart A C P, Mehta Y R. 2004. Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopathologia Brasileira, 29, 511–518.
Vaks V L, Domracheva E G, Chernyaeva M B, Pripolzin S I, Revin L S, Tretjyakov I V, Anfertev V A, Yablokov A A. 2017. Methods and approaches of high resolution spectroscopy for analytical applications. Optical and Quantum Electronics, 49, 239.
Valent B. 2004. Underground life for rice foe. Nature, 431, 516–517.
Vicentini S N C, Casado P S, de Carvalho G, Moreira S I, Dorigan A F, Silva T C, Silva A G, Custodio A A P, Gomes A C S, Maciel J L N, Hawkins N, McDonald B A, Fraaije B A, Ceresini P C. 2022. Monitoring of Brazilian wheat blast field populations reveals resistance to QoI, DMI, and SDHI fungicides. Plant Pathology, 71, 304–321.
Viedma L Q, Morel W. 2002. Añ Cabrera ublo o Piricularia del Trigo (Wheat Blast). Díptico. MAG/DIA/CRIA. Programa de Investigación de Trigo. CRIA, Paraguay. (in Spanish)
Vy T T P, Hyon G S, Nga N T T, Inoue Y, Chuma I, Tosa Y. 2014. Genetic analysis of host–pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. Journal of General Plant Pathology, 80, 59–65.
Wang G L, Valent B. 2017. Durable resistance to rice blast. Science, 355, 906–907.
Wang S, Asuke S, Vy T T P, Inoue Y, Chuma I, Win J, Kato K, Tosa Y. 2018. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology, 108, 1299–1306.
Wang X Y, Lee S H, Wang J C, Ma J B, Bianco T, Jia Y L. 2014. Current advances on genetic resistance to rice blast disease. In: Yan W G, Bao J S, eds., Rice - Germplasm, Genetics and Improvement. Chapter 7. Intech, UK. pp. 195–217.
Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant Journal, 19, 55–64.
Wilson R A, Talbot N J. 2009. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Review Microbiology, 7, 185–195.
Wu J, Kou Y J, Bao J D, Li Y, Tang M Z, Zhu X L, Ponaya A, Xiao G, Li J B, Li C Y, Song M Y, Cumagun C J R, Deng Q Y, Lu G D, Jeon J S, Naqvi N I, Zhou B. 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 206, 1463–1475.
Xue Y K, Shui G H, Wenk M R. 2014. TPS1 drug design for rice blast disease in Magnaporthe oryzae. SpringerPlus, 3, 18.
Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 21, 1573–1591.
Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. 2011. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theoretical and Applied Genetics, 122, 1017–1028.
Zhan S W, Mayama S, Tosa Y. 2008. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome, 51, 216–221.
Zhang F, Xie J. 2014. Genes and QTLs resistant to biotic and abiotic stresses from wild rice and their applications in cultivar improvements, rice-germplasm, genetics and improvement. In: Yan W, Bao J, eds., Rice-Germplasm, Genetics and Improvement. IntechOpen, Rijeka, Croatia. 
Zhang H F, Zheng X B, Zhang Z G. 2016. The Magnaporthe grisea species complex and plant pathogenesis. Molecular Plant Pathology, 17, 796–804.
Zhang S, Wang L, Wu W H, He L Y, Yang X F, Pan Q H. 2015. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scitific Reports, 5, 11642.
Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant–Microbe Interactions, 19, 1216–1228.
Zhu H Y, Liu Q L, Qi Y K, Huang X Y, Jiang F, Zhang S P. 2018. Plant identification based on very deep convolutional neural networks. Multimedia Tools and Applications, 77, 29779–29797.

[1] ZHAN Bin-hui, YANG Xiu-ling, Steven A. LOMMEL, ZHOU Xue-ping. Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3445-3455.
[2] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[3] DONG Suo-meng, ZHOU Shao-qun. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3456-3466.
[4] Andrew GALIMBERTI, Andrei ALYOKHIN, Hongchun QU, Jason ROSE .
Simulation modelling of potato virus Y spread in relation to initial inoculum and vector activity
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 376-388.
[5] FEI Li-wang, LU Wen-bo, XU Xiao-zhou, YAN Feng-cheng, ZHANG Li-wei, LIU Jin-tao, BAI Yuan-jun, LI Zhen-yu, ZHAO Wen-sheng, YANG Jun, PENG You-liang. A rapid approach for isolating a single fungal spore from rice blast diseased leaves[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1415-1418.
[6] Somnath Roy, Soma Das, Gautam Handique, Ananda Mukhopadhyay, Narayanannair Muraleedharan. Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): A review[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2115-2127.
[7] XIAO Wu-ming, LUO Li-xin, WANG Hui, GUO Tao, LIU Yong-zhu, ZHOU Ji-yong, ZHU Xiao-yuan, YANG Qi-yun, CHEN Zhi-qiang. Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2290-2298.
[8] HUANG Jia; WU Shun-fan and YE Gong-yin. Evaluation of Lethal Effects of Chlorantraniliprole on Chilo suppressalis and Its Larval Parasitoid, Cotesia chilonis[J]. >Journal of Integrative Agriculture, 2011, 10(7): 1134-1138.
[9] Stuart R Reitz, GAO Yu-lin and LEI Zhong-ren. Thrips: Pests of Concern to China and the United States[J]. >Journal of Integrative Agriculture, 2011, 10(6): 867-892.
No Suggested Reading articles found!