Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Methylation dynamics modified by GhDMT9, playing an vital role in drought response of cotton

Xuke Lu1*, Junjuan Wang1*, Shuai Wang1*, Xiugui Chen1*, Delong Wang1, Zujun Yin1, Lanjie Zhao1, Lixue Guo1, Waqar Afzal Malik1, Maohua Dai2#, Wuwei Ye1# 

1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University/National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang 455000, China

2 Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crops Drought Resistance, Hengshui 053000, China

 Highlights 

Firstly and successfully created ghdmt9 mutant using CRISPR/Cas 9 system in cotton.

Systematically and comprehensively interpreted DNA methylation alterations between wild type (WT) and ghdmt9 mutant.

Transcription factor lsh was identified to interact with methyltransferase GhDMT9 by ChIP-seq method. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

DNA甲基化是一种稳定的表观遗传修饰,在植物抗旱响应中具有重要作用。众所周知,甲基转移酶突变体材料对于研究甲基化变异是必要的,利用甲基转移酶突变体研究棉花响应干旱胁迫的表观分子机制不清楚。本研究旨在解析由甲基转移酶基因GhDMT9调控棉花响应抗旱胁迫的表观遗传编码,为棉花抗旱性的分子机制研究提供有价值的参考信息。利用CRISPR/Cas9技术成功创制了首个棉花甲基转移酶突变体ghdmt9,并基于该突变体通过全基因组重亚硫酸盐测序(WGBS)和转录组分析进行了甲基化变异分析。此外,制备了甲基转移酶GhDMT9的特异性抗体,并用于染色质免疫沉淀(ChIP-seq)分析。结果表明,在干旱胁迫下,ghdmt9突变体解释了约2.06%的甲基化位点变异。去甲基化变异主要来源于CHGCHH序列,且与干旱响应密切相关。无论在正常生长阶段还是干旱胁迫条件下,由去甲基化变异诱导的上调基因数量明显多于下调基因,尤其是调控脂质及类脂分子以及激素相关基因。此外,ghdmt9突变体的纤维品质显著优于野生型(WT)。有趣的是,通过ChIP-seq分析发现转录因子lsh (组蛋白赖氨酸特异性去甲基化酶)可与甲基转移酶基因GhDMT9互作,激活其对靶基因区域的甲基化调控功能。总体而言,研究结果拓展了对甲基转移酶GhDMT9调控棉花干旱响应机制的理解,并进一步研究棉花响应其它非生物胁迫的表观分子机制提供参考。



Abstract  

DNA methylation is a stable epigenetic modification with essential roles in plant drought response. It is known that methyltransferase mutant is necessary for the regulation of methylation variations, but this epigenetic molecular mechanism based on methyltransferase mutant in responding to drought stress was still unclear in cotton. In this study, we aim to decipher the epigenetic code of drought response regulated by methyltransferase gene GhDMT9 in cotton, providing valuable information for the molecular research of drought resistance in cotton. We successfully created the first cotton methyltransferase mutant ghdmt9 using CRISPR/Cas9 method and performed methylation variations analysis with whole-genome bisulfite sequencing (WGBS) and transcriptome analysis based on ghdmt9 mutant. In addition, specific antibody of methyltransferase GhDMT9 was prepared and used for Chromatin Immunoprecipitation (ChIP-seq) analysis. The results indicated that ghdmt9 mutant interpreted approximately 2.06% methylation variations under drought stress. Demethylation variations, mainly derived from the CHG and CHH contexts, were closely correlated with drought response. Whether at normal growth stage or under drought stress, the number of up-regulated genes induced by demethylation variations was apparently higher than the number of down-regulated genes, especially genes regulating lipids and lipid-like molecules and hormone-related genes. In addition, fiber quality of ghdmt9 mutant was obviously better than that of wild type (WT). Interestingly, a transcription factor lsh (lysine-specific histone) was found to interact with methyltransferase gene GhDMT9 to activate its hyper-methylation function of target genomic regions by ChIP-seq analysis. Overall, our results extend our understanding of the epigenetic regulation of methyltransferase GhDMT9 in drought response and contribute to further investigations of the epigenetic mechanisms underlying abiotic stresses in cotton. 

Keywords:  methylation variations       methyltransferase GhDMT9              CRISPR/Cas9              drought stress              regulation mechanism              cotton  
Online: 05 February 2026  
Fund: 

This work was supported by the Natural Science Foundation of Henan Province (252300421434), the National Key R&D Program of China (2025YFE0105100), the Science and Technology Innovation Special Project of Hebei Academy of Agriculture and Forestry Sciences (2025KJCXZX-HXJS-8), the Doctoral fund project of Hebei Academy of Agriculture and Forestry Sciences, the Biological Agriculture Joint Fund of Hebei Province Natural Science Foundation Project (C2023301042), Agricultural key core technology project of Xinjiang Production and Construction Corps (NYHXGG2023AA311-1), the National Natural Science Foundation of China (32001460), the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences, and the China Agriculture Research System of MOF and MARA (CARS-15). We are also grateful for the funding of Xinjiang group project “Biological Improvement of Saline-Alkali Land”.

About author:  #Correspondence Wuwei Ye, E-mail: yew158@163.com; Maohua Dai, E-mail: daimaohua@sina.com *These authors contributed equally to this work.

Cite this article: 

Xuke Lu, Junjuan Wang, Shuai Wang, Xiugui Chen, Delong Wang, Zujun Yin, Lanjie Zhao, Lixue Guo, Waqar Afzal Malik, Maohua Dai, Wuwei Ye. 2026. Methylation dynamics modified by GhDMT9, playing an vital role in drought response of cotton. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.011

Ackah M, Guo L, Li S, Jin X, Asakiya C, Aboagye E T, Yuan F, Wu M, Essoh L G, Adjibolosoo D, Attaribo T, Zhang Q, Qiu C, Lin Q, Zhao W. 2022. DNA methylation changes and its associatedgenes in mulberry (Morus alba L.) Yu-711 response to drought stress using methylRAD sequencing. Plants (Basel), 11, 190.  

Agarwal G, Kudapa H, Ramalingam A, Choudhary D, Sinha P, Garg V, Singh V K, Patil G B, Pandey M K, Nguyen H T, Guo B, Sunkar R, Niederhuth C E, Varshney R K. 2020. Epigenetics and epigenomics: Underlying mechanisms, relevance, and implications in crop improvement. Functional & Integrative Genomics, 20, 739-761.

Akalin A, Kormaksson M, Li S, Garrett-Bakelman F E, Figueroa M E, Melnick A, Mason C E. 2012. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biology, 13, R87.

Chen T P, Li E. 2004. Structure and function of eukaryotic DNA methyltransferases. Stem Cells in Development and Disease, 60, 55-89.

Corem S, Doron-Faigenboim A, Jouffroy O, Maumus F, Arazi T, Bouché N. 2018. Redistribution of CHH methylation and small interfering RNAs across the genome of tomato mutants. Plant Cell, 30, 1628-1644.

Czajka K, Mehes-Smith M, Nkongolo K. 2022. DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics, 44, 279-297.

Van Dooren T J M, Silveira A B, Gilbault E, Jimenez-Gomez J M, Martin A, Bach L, Tisne S, Quadrana L, Loudet O, Colot V. 2020. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. Journal of Experimental Botany, 71, 3588-3602.

Goll M G, Bestor T H. 2005. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry, 74, 481-514.

Groth M, Stroud H, Feng S, Greenberg M V, Vashisht A A, Wohlschlegel J A, Jacobsen S E, Ausin I. 2014. SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 111, 17666-17671.

Jin S X, Liang S G, Zhang X L, Nie Y C, Guo X P. 2006a. An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell Tissue and Organ Culture, 85, 181-185.

Jin S X, Zhang X L, Nie Y C, Guo X P, Liang S G, Zhu H G. 2006b. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum, 50, 519-524.

Kakutani T, Kato M, Kinoshita T, Miura A. 2004. Control of development and transposon movement by DNA methylation in Arabidopsis thaliana. Epigenetics, 69, 139-143.

Kawashima T, Berger F. 2014. Epigenetic reprogramming in plant sexual reproduction. Nature Reviews Genetics, 15, 613-624.

Krueger F, Andrews S R. 2011. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571-1572.

Law J A, Jacobsen S E. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204-220.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc G P D. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.

Li L, Chang H, Zhao S, Liu R, Yan M, Li F, El-Sheery N I, Feng Z, Yu S. 2024. Combining high-throughput deep learning phenotyping and GWAS to reveal genetic variants of fruit branch angle in upland cotton. Industrial Crops and Products, 220, 119180.

Li L, Zhang C, Huang J, Liu Q, Wei H, Wang H, Liu G, Gu L, Yu S. 2021. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 19, 109-123.

Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C Y, Tang S, Wang Y, Yang L, Wang J, Yin W, Xia X. 2014. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genetics, 15 (Suppl 1), S9.

Liu X, Yu C W, Duan J, Luo M, Wang K, Tian G, Cui Y, Wu K. 2012. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiology, 158, 119-129.

Lu X, Chen X, Wang D, Yin Z, Wang J, Fu X, Wang S, Guo L, Zhao L, Cui R, Dai M, Rui C, Fan Y, Zhang Y, Sun L, Malik W A, Han M, Chen C, Ye W. 2022. A high-quality assembled genome and its comparative analysis decode the adaptive molecular mechanism of the number one Chinese cotton variety CRI-12. Gigascience, 11, 1-14.

Lu X, Wang X, Chen X, Shu N, Wang J, Wang D, Wang S, Fan W, Guo L, Guo X, Ye W. 2017. Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. BMC Genomics, 18, 297.

Lu X K, Zhao X J, Wang D L, Yin Z J, Wang J J, Fan W L, Wang S, Zhang T B, Ye W W. 2015. Whole-genome DNA methylation analysis in cotton (Gossypium hirsutum L.) under different salt stresses. Turkish Journal of Biology, 39, 396-406.

Martienssen R A, Colot V. 2001. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 293, 1070-1074.

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A. 2009. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Research, 37, 18.

Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D C, Llewellyn D, Showmaker K C, Shu S Q, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G J, et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 492, 423-427.

Qin Y, Sun M L, Li W W, Xu M Q, Shao L, Liu Y Q, Zhao G N, Liu Z P, Xu Z P, You J Q, Ye Z X, Xu J W, Yang X Y, Wang M J, Lindsey K, Zhang X L, Tu L L. 2022. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnology Journal, 20, 2372-2388.

Sallam N, Moussa M, Yacout M, Shakam H M. 2022. Detection of DNA methylation in DBF1 gene of maize inbred W64A and mutant vp14 exposed to drought stress. Cereal Research Communications, 50, 19-24.

Selker E U. 2004. Genome defense and DNA methylation in neurospora. Epigenetics, 69, 119-124.

Shan X H, Wang X Y, Yang G, Wu Y, Su S Z, Li S P, Liu H K, Yuan Y P. 2013. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. Journal of Plant Biology, 56, 32-38.

Shook M S, Richards E J. 2014. VIM proteins regulate transcription exclusively through the MET1 cytosine methylation pathway. Epigenetics, 9, 980-986.

Song Q, Decato B, Hong E E, Zhou M, Fang F, Qu J H, Garvin T, Kessler M, Zhou J, Smith A D. 2013. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE, 8, 12.

Song Q, Guan X, Chen Z J. 2015. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton. Plos Genetics, 11, e1005724.

Stroud H, Do T, Du J M, Zhong X H, Feng S H, Johnson L, Patel D J, Jacobsen S E. 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Structural Molecular Biology, 21, 64-72.

Stroud H, Greenberg M V, Feng S, Bernatavichute Y V, Jacobsen S E. 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell, 152, 352-364.

To T K, Kim J M, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T, Kimura H, Yokoyama S, Shinozaki K, Seki M. 2011. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. Plos Genetics, 7, 4.

Verkest A, Bourout S, Debaveye J, Reynaert K, Saey B, Den Brande I V, D'halluin K. 2019. Impact of differential DNA methylation on transgene expression in cotton (Gossypium hirsutum L.) events generated by targeted sequence insertion. Plant Biotechnol Journal, 17, 1236-1247.

Wang P C, Zhang J, Sun L, Ma Y Z, Xu J, Liang S J, Deng J W, Tan J F, Zhang Q H, Tu L L, Daniell H, Jin S X, Zhang X L. 2018. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol Journal, 16, 137-150.

Wang W S, Pan Y J, Zhao X Q, Dwivedi D, Zhu L H, Ali J, Fu B Y, Li Z K. 2011. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany, 62, 1951-1960.

Wang Y T, Wen J X, Li S F, Li J Y, Yu H, Li Y N, Ren X F, Wang L Q, Tang J F, Zhang X, Liu Z Q, Peng L C. 2024. Upgrading pectin methylation for consistently enhanced biomass enzymatic saccharification and cadmium phytoremediation in rice site-mutants. International Journal of Biological Macromolecules, 262, 130137.

Woo H R, Dittmer T A, Richards E J. 2008. Three SRA-Domain Methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. Plos Genetics, 4, 8.

Yang X M, Lu X K, Chen X G, Wang D L, Wang J J, Wang S, Guo L X, Chen C, Wang X G, Wang X L, Ye W W. 2019. Genome-wide identification and expression analysis of DNA demethylase family in cotton. Journal of Cotton Research, 2, 16.

Zhang B, Feng C, Chen L, Li B, Zhang X, Yang X. 2022. Identification and functional analysis of bZIP genes in cotton response to drought stress. International Journal of Molecular Sciences, 23, 23.

Zhang H, Lang Z, Zhu J K. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19, 489-506.

Zhang Y Y, Fischer M, Colot V, Bossdorf O. 2013. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 197, 314-322.

Zhao L, Ding Q, Zeng J, Wang F R, Zhang J, Fan S J, He X Q. 2012. An improved CTAB-ammonium acetate method for total RNA isolation from cotton. Phytochemical Analysis, 23, 647-650.

Zhao T, Guan X Y, Hu Y, Zhang Z Q, Yang H, Shi X W, Han J, Mei H, Wang L Y, Shao L, Wu H Y, Chen Q Q, Zhao Y Y, Pan J Y, Hao Y P, Dong Z Y, Long X, Deng Q, Zhao S J, Zhang M K, et al. 2024. Population-wide DNA methylation polymorphisms at single-nucleotide resolution in 207 cotton accessions reveal epigenomic contributions to complex traits. Cell Research, 34, 859-872.

Zhong S, Fei Z, Chen Y R, Zheng Y, Huang M, Vrebalov J, Mcquinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni J J. 2013. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology Journal, 31, 154-159.

Zilberman D, Gehring M, Tran R K, Ballinger T, Henikoff S. 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics, 39, 61-69.

Zou X Y, Ali F, Jin S X, Li F G, Wang Z. 2022. RNA-Seq with a novel glabrous-ZM24 reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC Plant Biology, 22, 1. 

[1] Yajie Gao, Song Wang, Anqi Di, Chao Hai, Di Wu, Zhenting Hao, Lige Bu, Xuefei Liu, Chunling Bai, Guanghua Su, Lishuang Song, Zhuying Wei, Zhonghua Liu, Lei Yang, Guangpeng Li. Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1125-1136.
[2] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[3] Shuangxi Zhang, Xinlin Wei, Rongbo Wang, Hejing Shen, Hehuan You, Langjun Cui, Yi Qiang, Peiqing Liu, Meixiang Zhang, Yuyan An. Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1064-1073.
[4] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[5] Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1114-1124.
[6] Yulong Guo, Wanzhuo Geng, Botong Chen, Zhimin Cheng, Yihao Zhi, Yanhua Zhang, Donghua Li, Ruirui Jiang, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Hong Li, Xiaojun Liu. Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus)[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1150-1164.
[7] Jinxiang Gao, Bing Li, Pei Qin, Sihao Zhang, Xiaoting Li, Yebitao Yang, Wenhao Shen, Shan Tang, Jijun Li, Liang Guo, Jun Zou, Jinxing Tu. A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus[J]. >Journal of Integrative Agriculture, 2026, 25(3): 879-892.
[8] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[9] Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut[J]. >Journal of Integrative Agriculture, 2026, 25(3): 893-902.
[10] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[11] Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density[J]. >Journal of Integrative Agriculture, 2026, 25(3): 938-951.
[12] Ping Lin, Shanshan Liu, Zhidan Fu, Kai Luo, Yiling Li, Xinyue Peng, Xiaoting Yuan, Lida Yang, Tian Pu, Yuze Li, Taiwen Yong, Wenyu Yang. Rhizosphere flavonoids alleviate inhibition of soybean nodulation caused by shading under maize–soybean strip intercropping[J]. >Journal of Integrative Agriculture, 2026, 25(3): 952-964.
[13] Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. Critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities[J]. >Journal of Integrative Agriculture, 2026, 25(3): 965-976.
[14] Ming Li, Jingjing Wang, Jia’nan Wen, Juan J. Loor, Qianming Jiang, Jingyi Wang, Huijing Zhang, Yue Yang, Wei Yang, Bingbing Zhang, Chuang Xu. ACSL4 is a target for β-hydroxybutyrate-induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1137-1149.
[15] Jieyu Dai, Ze Xu, Qianjin Zhan, Jingwen Zhu, Lijun Cao, Zhanling Lu, Yuting Xu, Tongyang Kang, Yanan Hu, Caiping Zhao. Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening[J]. >Journal of Integrative Agriculture, 2026, 25(3): 977-988.
No Suggested Reading articles found!