Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
ACSL4 is a target for β-hydroxybutyrate–induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells

Ming Li1, Jingjing Wang2, Jianan Wen2, Juan J. Loor3, Qianming Jiang3, Jingyi Wang1, Huijing Zhang1, Yue Yang1, Wei Yang4, Bingbing Zhang2, Chuang Xu1#

College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

2 College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China

3 Mammalian NutriPhysio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801

4 College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China

 Highlights 
1. ACSL4 regulates fatty acid synthesis and accumulation in BMECs during ketosis.
2. BHB leads to an increase in ACSL4 expression, which in turn increases fatty acid content and lipid droplet accumulation, and inhibiting ACSL4 would reduce the effects of BHB.
3. ACSL4 suppression decreases ROS, improves mitochondrial function, and increases fatty acid oxidation.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  奶牛是一种常见的代谢疾病,通常发生在泌乳早期,并且与血液中高浓度β-羟丁酸(BHB)有关。部分到达乳腺的BHB会被用作合成脂肪酸的前体。最近,非反刍动物研究表明,长链脂酰辅酶A合成酶4ACSL4)可能在细胞脂肪酸代谢的调节中发挥作用,但ACSL4在响应BHB时如何介导细胞脂质代谢的机制尚不清楚。为了明确这一问题,我们对牛乳腺活检组织和永生化的乳腺上皮细胞系(MAC-T)进行了体内和体外分析。体内研究(n = 6头牛/组)健康牛(血浆BHB < 0.60 mmol L-1)或患有酮牛(血浆BHB > 2.0 mmol L-1)进行乳腺组织活检。在体外实验中,MAC-T细胞分别接受了00.30.61.22.4 mmol L-1 BHB处理24小时,以确定BHB最佳处理剂量。随后,MAC-T细胞接受1.2 mmol L-1 BHB处理036122448小时。此外,MAC-T细胞还分别进行了ACSL4小干扰RNAsiACSL4)处理24小时或ACSL4过表达质粒(pcACSL4)处理36小时,之后用1.2 mmol L-1 BHB处理24小时。研究结果表明BHB处理后,乳腺组织和体外细胞实验中的脂肪合成相关的mRNA和蛋白质表达量均增加。BHB通过激活ACSL4表达增加了脂肪酸含量,而抑制ACSL4则减少了BHB引起的活性氧(ROS)过度产生、线粒体膜电位增强、脂肪酸含量增加以及脂滴积累。此外,通过过表达质粒提高ACSL4表达进一步明确了其在BHB刺激中的分子作用。ACSL4过表达增强了BHB引起的脂肪酸含量的增加和脂滴积累。总体而言,研究表明ACSL4BHB调控的脂肪酸合成过程中起关键作用。减少ACSL4表达会降低脂肪酸含量和脂滴积累,改善线粒体功能,促进脂肪酸氧化。本文首次报道了在外周血BHB浓度显著增加的时期,改变ACSL4丰度有助于调节乳腺上皮细胞中异常的脂肪酸代谢,从而为调控产后能量负平衡下乳脂代谢异常提供理论依据。




Abstract  

Ketosis, a common metabolic disease during early lactation, is associated with high circulating levels of β-hydroxybutyrate (BHB). A portion of BHB that reaches the mammary gland is utilized as precursor for synthesis of fatty acids. Recent findings from nonruminant studies revealed that long chain fatty acyl-CoA ligase 4 (ACSL4) could play a role in the regulation of cellular fatty acid metabolism, but the mechanisms by which ACSL4 mediates cellular lipid metabolism in response to BHB remains unclear. To achieve the aims, we conducted in vivo or in vitro analyses using bovine mammary gland biopsies and the immortalized mammary epithelial cell line (MAC-T). The in vivo study (n = 6 cows group-1) involved healthy cows (plasma BHB < 0.60 mmol L-1) or ketotic cows (plasma BHB > 2.0 mmol L-1) from which mammary gland tissue was biopsied. In vitro, MAC-T cells were challenged with 0, 0.3, 0.6, 1.2, or 2.4 mmol L-1 BHB for 24 h to determine an optimal dose. Subsequently, MAC-T were incubated with 1.2 mmol L-1 BHB for 0, 3, 6, 12, 24, or 48 h. Furthermore, MAC-T cells were treated with small interfering ACSL4 (siACSL4) for 24 h or ACSL4 overexpression plasmid (pcACSL4) for 36 h followed by a challenge with 1.2 mmol L-1 BHB for 24 h. Results showed that increased mRNA and protein abundance of lipogenic genes were linked to both mammary gland and in vitro challenge with BHB. BHB increased fatty acid content by activating ACSL4 expression, whereas inhibition of ACSL4 reduced BHB-induced reactive oxygen species (ROS) overproduction, enhancement of mitochondrial membrane potential, increase in fatty acid content, and lipid droplet accumulation. Furthermore, we also elevated ACSL4 expression with an overexpression plasmid to clarify its molecular role in response to BHB challenge. ACSL4 overexpression enhances BHB-induced lipid droplet accumulation by increased fatty acid content. Overall, the information showed that ACSL4 is crucial for the process of producing fatty acids from exogenous BHB. Reduced ACSL4 decreased fatty acid content and lipid droplet accumulation, improved mitochondrial function, directed more fatty acids towards oxidation. Thus, ACSL4 plays an important role in determining the fate of intracellular fatty acids and BHB in BMECs.

Keywords:  bovine mammary epithelial cells       fatty acid contents        ketosiss        BHBs        ACSL4  
Online: 05 December 2024  
Fund: 

The study was supported by grants from the National Key Research and Development Program of China (2023YFD1800804 and 2023YFD1801100), The National Natural Science Foundation of China (32172926), China Agriculture Research System (CARS-36).

About author:  Ming Li, E-mail: liming5697@163.com; #Correspondence Chuang Xu, E-mail: xuchuang7175@163.com

Cite this article: 

Ming Li, Jingjing Wang, Jianan Wen, Juan J. Loor, Qianming Jiang, Jingyi Wang, Huijing Zhang, Yue Yang, Wei Yang, Bingbing Zhang, Chuang Xu. 2024. ACSL4 is a target for β-hydroxybutyrate–induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.004

Baird G D. 1982. Primary ketosis in the high-producing dairy cow: clinical and subclinical disorders, treatment, prevention, and outlook. Journal of Dairy Science, 65, 1-10.

Bauman D E, Griinari J M. 2000. Regulation and nutritional manipulation of milk fat. Low-fat milk syndrome. Advances in Experimental Medicine and Biology, 480, 209-216.

Bionaz M, Loor J J. 2008a. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. Journal of Nutrition, 138, 1019-1024.

Bionaz M, Loor J J. 2008b. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics, 9, 366.

Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, Feng X, Cheng Q, Wu W, Lu Y, Xie H, Zhou L, Wu J, Zheng S. 2021. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. Cancer Letters, 502, 154-165.

Duan J, Wang Z, Duan R, Yang C, Zhao R, Feng Q, Qin Y, Jiang J, Gu S, Lv K, Zhang L, He B, Birnbaumer L, Yang S, Chen Z, Yang Y. 2022. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice. Hepatology, 75, 140-153.

Duffield T F, Lissemore K D, McBride B W, Leslie K E. 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science, 92, 571-580.

Fan Y, Han Z, Lu X, Zhang H, Arbab A A I, Loor J J, Yang Y, Yang Z. 2020. Identification of Milk Fat Metabolism-Related Pathways of the Bovine Mammary Gland during Mid and Late Lactation and Functional Verification of the ACSL4 Gene. Genes (Basel), 11, 1357.

Finck B N, Gropler M C, Chen Z, Leone T C, Croce M A, Harris T E, Lawrence J C, Jr., Kelly D P. 2006. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metabolism, 4, 199-210.

Jia J, Duan H, Liu B, Ma Y, Ma Y, Cai X. 2023. Alfalfa Xeno-miR168b Target CPT1A to Regulate Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Metabolites, 13, 76.

Kadegowda A K, Bionaz M, Piperova L S, Erdman R A, Loor J J. 2009. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92, 4276-4289.

Kelly D P, Scarpulla R C. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes and Development, 18, 357-368.

Kotronen A, Yki-Jarvinen H, Aminoff A, Bergholm R, Pietilainen K H, Westerbacka J, Talmud P J, Humphries S E, Hamsten A, Isomaa B, Groop L, Orho-Melander M, Ehrenborg E, Fisher R M. 2009. Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts. European Journal Of Endocrinology, 160, 593-602.

Li J, Zhao C, Liu M, Chen L, Zhu Y, Gao W, Du X, Song Y, Li X, Liu G, Lei L, Feng H. 2023. Nuciferine Ameliorates Nonesterified Fatty Acid-Induced Bovine Mammary Epithelial Cell Lipid Accumulation, Apoptosis, and Impaired Migration via Activating LKB1/AMPK Signaling Pathway. Journal of Agricultural and Food Chemistry, 71, 443-456.

Li P, Li X B, Fu S X, Wu C C, Wang X X, Yu G J, Long M, Wang Z, Liu G W. 2012. Alterations of fatty acid beta-oxidation capability in the liver of ketotic cows. Journal of Dairy Science, 95, 1759-1766.

Li P, Wu C C, Long M, Zhang Y, Li X B, He J B, Wang Z, Liu G W. 2013. Short communication: high insulin concentrations inhibit fatty acid oxidation-related gene expression in calf hepatocytes cultured in vitro. Journal of Dairy Science, 96, 3840-3844.

Littledike E T, Young J W, Beitz D C. 1981. Common metabolic diseases of cattle: ketosis, milk fever, grass tetany, and downer cow complex. Journal of Dairy Science, 64, 1465-1482.

Liu X, Shen J, Zong J, Liu J, Jin Y. 2021. Beta-Sitosterol Promotes Milk Protein and Fat Syntheses-Related Genes in Bovine Mammary Epithelial Cells. Animals (Basel), 11, 3238.

Loor J J, Bionaz M, Drackley J K. 2013. Systems physiology in dairy cattle: nutritional genomics and beyond. Annual Review of Animal Biosciences, 1, 365-392.

National Academies of Sciences E, Medicine. 2021. In: Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. National Academies of Sciences, Engineering, and Medicine, Washington (DC).

Oetzel G R. 2004. Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics Of North America-food Animal Practice, 20, 651-674.

Pawlak M, Lefebvre P, Staels B. 2015. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology, 62, 720-733.

Ren H, Zhang H, Hua Z, Zhu Z, Tao J, Xiao H, Zhang L, Bi Y, Wang H. 2022a. ACSL4 Directs Intramuscular Adipogenesis and Fatty Acid Composition in Pigs. Animals (Basel), 12, 119.

Steenson S, Shojaee-Moradie F, M B W, K G J, Lovegrove J A, B A F, Umpleby A M. 2020. The Effect of Fructose Feeding on Intestinal Triacylglycerol Production and De Novo Fatty Acid Synthesis in Humans. Nutrients, 12, 1781.

Sun X, Wang Y, Loor J J, Bucktrout R, Shu X, Jia H, Dong J, Zuo R, Liu G, Li X, Li X. 2019. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. Journal of Dairy Science, 102, 1682-1692.

Tuohetahuntila M, Spee B, Kruitwagen H S, Wubbolts R, Brouwers J F, van de Lest C H, Molenaar M R, Houweling M, Helms J B, Vaandrager A B. 2015. Role of long-chain acyl-CoA synthetase 4 in formation of polyunsaturated lipid species in hepatic stellate cells. Biochimica et Biophysica Acta, 1851, 220-230.

Yadav H, Quijano C, Kamaraju A K, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright E C, Stuelten C, Sun P, Lonning S, Skarulis M, Sumner A E, Finkel T, Rane S G. 2011. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metabolism, 14, 67-79.

Zhang B, Li M, Yang W, Loor J J, Wang S, Zhao Y, Guo H, Ma X, Xia C, Xu C. 2020. Orai calcium release-activated calcium modulator 1 (ORAI1) plays a role in endoplasmic reticulum stress in bovine mammary epithelial cells challenged with physiological levels of ketone bodies. Journal of Dairy Science, 103, 4691-4701.

Zhang S, Qi H, Wen X P, Li P, Gao X J, Ao J X. 2019. The phosphorylation of Tudor-SN mediated by JNK is involved in the regulation of milk protein synthesis induced by prolactin in BMECs. Journal of Cellular Physiology, 234, 6077-6090.

Zhu J, Cui G, Chen M, Xu Q, Wang X, Zhou D, Lv S, Fu L, Wang Z, Zuo J. 2013. Expression of R132H mutational IDH1 in human U87 glioblastoma cells affects the SREBP1a pathway and induces cellular proliferation. Journal of Molecular Neuroscience, 50, 165-171.

Zhu Y, Guan Y, Loor J J, Sha X, Coleman D N, Zhang C, Du X, Shi Z, Li X, Wang Z, Liu G, Li X. 2019. Fatty acid-induced endoplasmic reticulum stress promoted lipid accumulation in calf hepatocytes, and endoplasmic reticulum stress existed in the liver of severe fatty liver cows. Journal of Dairy Science, 102, 7359-7370.

No related articles found!
No Suggested Reading articles found!