Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Enhancing yield of modern maize (Zea mays L.) hybrids through the optimization of population photosynthetic capacity and light-nitrogen efficiency under high density

Zhenlong Wang1, Pin He2, Xuyao Li1, Tieshan Liu3, Saud Shah4, Hao Ren1, Baizhao Ren1, Peng Liu1, Jiwang Zhang1, Bin Zhao1#

1 Key Laboratory of Crop Ecophysiology and Farming System and College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

2 Seed Station of Tianshui Agriculture and Rural Bureau, Tianshui Agriculture and Rural Bureau, Tianshui 741000, China

3 Shandong Academy of Agricultural Sciences, Jinan 250100, China

4 College of life science, Linyi University, Linyi 276000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由于玉米生产中耐密抗倒伏品种的育,密植已成为玉米高产稳产的有效手段,而优良的杂交种是玉米生产中合理密植的前提。然而,中国不同年代主推的玉米杂交种提高耐密性的光合作用机理尚不清楚。本研究旨在探究40年来增强不同密度下的玉米光合性状所做出的育种努力,阐明提高玉米杂交种耐密性的生理生态机制。我们在2019年、2020年和2021年开展了为期3年的研究。我们将1970年到2009中国主要推广的8个主要杂交种分为4个年代,在3种植密度(45000D1)、67500D2)和90000D3·hm-2)下进行了比较。在高密度下,现代杂交种的冠层结构和叶片光合性能与老杂交种相比更为合理,比叶氮略有下降。在所有处理中,现代杂交种(2000年代)在D3密度下能保持较高的净光合速率和光合氮利用效率(PNUE),因此籽粒产量(GY)最高,老杂交种(1970年代)相比提了118.47%。花后叶面积持续时间、叶绿素总含量、光合关键酶活性和PS光化学最大效率均与GY呈正相关,其中PNUEGY的相关性更为显著,是玉米杂交种优化的关键指标。基于以上结果,育种工作者应继续在逆境和高密度条件下进行杂交种选育,注重群体结构的优化和光合能力的持续提高,寻找最佳叶片含氮量状态,从而选育出高产、耐密植的杂交种,使玉米GY持续提高。



Abstract  

Due to the breeding of dense-resistant and lodging-resistant varieties in maize production, dense planting has become an effective means for achieving high and stable yields, while excellent hybrids are a prerequisite for reasonable dense planting in maize production.  Nonetheless, the photosynthetic mechanism of improving plant density tolerance of maize hybrids released at different era in China remains unclear.  This study aims to investigate the 40-year breeding effort for enhanced photosynthetic trait at different densities, and elucidate the physiological and ecological mechanisms of improving the density tolerance of maize hybrids.  We conducted a 3-year study in 2019, 2020, and 2021.  From 1970 to 2009, a comparison was made between the eight major hybrids promoted in China, divided into four decades, under three planting densities (45,000 (D1), 67,500 (D2), and 90,000 (D3) plants ha−1).  At high density, modern hybrids had more rational canopy structure and leaf photosynthetic performance compared with old hybrids and specific leaf nitrogen has decreased slightly.  Among all treatments, the modern hybrids (2000s) were able to maintain higher net photosynthetic rate and photosynthetic nitrogen utilization efficiency (PNUE) at D3 density, and therefore possessed the highest grain yield (GY), which was 118.47% higher than that of the old hybrids (1970s).  Leaf area duration after anthesis, total chlorophyll content, photosynthesis key enzyme activities, and maximum efficiency of PSII photochemistry were all positively correlated with GY, with PNUE was more significantly correlated with GY indeed and is a key indicator for maize hybrids optimization.  Based on these results, breeders should continue to conduct hybrid selections under adverse and high-density conditions, focusing on the optimization of population structure and the continuous improvement of photosynthetic capacity, searching for the optimal leaf nitrogen-content status, so as to select and breed high-yielding and density-tolerance hybrids, which resulted in a sustained increase in maize GY.

Keywords:  maize hybrids       planting density        photosynthetic characteristics        photosynthetic N use efficiency        grain yield  
Received: 16 April 2024   Online: 14 September 2024  
Fund: 

The authors are grateful to the reviewers and editors for their constructive review and suggestions for this paper.  This work was supported by the National Natural Science Foundation of China (32071960) and the National Key Research and Development Program of China (2018YFD0300603).

About author:  Zhenlong Wang, E-mail: 2022110018@sdau.edu.cn; #Correspondence Bin Zhao, E-mail: zhaobin@sdau.edu.cn

Cite this article: 

Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. 2024. Enhancing yield of modern maize (Zea mays L.) hybrids through the optimization of population photosynthetic capacity and light-nitrogen efficiency under high density. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.007

Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. 2014. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research, 155, 111-119.

Assefa Y, Prasad P V, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti I A. 2016. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Science, 56, 2802-2817.

Badu-Apraku B, Fakorede M A B, Oyekunle M. 2014. Agronomic traits associated with genetic gains in maize yield during three breeding eras in West Africa. Maydica, 59, 49-57.

Brekke B, Edwards J, Knapp A. 2011. Selection and adaptation to high plant density in the Iowa Stiff Stalk Synthetic maize (Zea mays L.) population. Crop Science, 51, 1965-1967.

Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H. 2021. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture, 20, 494-510.

Cardwell V B. 1982. Fifty years of Minnesota corn production: Sources of yield increase. Agronomy Journal, 74, 984-990.

Chen K R, Camberato J J, Vyn T J. 2017. Maize grain yield and kernel component relationships to morphophysiological traits in commercial hybrids separated by four decades. Crop Science, 57, 1641-1657.

Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. 2011. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 185, 395-406.

Debruin J L, Schussler J R, Mo H, Cooper M. 2017. Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest. Crop Science, 57, 1431-1446.

Demmig-Adams B, Adams III W W, Baker D H, Logan B A, Bowling D R, Verhoeven A S. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264.

Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M. 2005. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research, 93, 108-115.

Dong S T, Wang K J, Hu C H. 2000. Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agronomica Sinica, 26, 200-204. (in Chinese)

Duan X M. 2005. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. Journal of Maize Sciences, 13, 49-52. (in Chinese)

Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 86, 83-145.

Elli E F, Edwards J, Yu J M, Trifunovic S, Eudy D M, Kosola K R, Schnable P S, Lamkey K R, Archontoulis S V. 2023. Maize leaf angle genetic gain is slowing down in the last decades. Crop Science, 63, 3520-3533.

Fan P P, Anten N P R, Evers J B, Li Y Y, Li S K, Ming B, Xie R Z. 2024. Higher yields of modern maize cultivars are not associated with coordinated light and N distribution within the canopy. Field Crops Research, 305, 109182.

Fan P P, Ming B, Evers J B, Li Y Y, Li S K, Xie R Z, Anten N P R. 2023. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research, 297, 108927.

Feller U, Anders I, Mae T. 2008. Rubiscolytics: Fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59, 1615-1624.

Feng P, Shen X H, Zheng H Y, Zhang H, Li Z J, Yang H K, Li M S. 2014. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chinese Agricultural Science Bulletin, 30, 92-100. (in Chinese)

Frei O M. 2000. Changes in yield physiology of corn as a result of breeding in Northern Europe. Maydica, 45, 173-183.

Fu W, Wang Y, Ye Y L, Zhen S, Zhou B H, Wang Y, Hu Y J, Zhao Y N, Huang Y F. 2020. Grain yields and nitrogen use efficiencies in different types of stay-green maize in response to nitrogen fertilizer. Plants, 9, 474.

Griffin J J, Ranney T G, Pharr D M. 2004. Photosynthesis, chlorophyll fluorescence, and carbohydrate content of illicium taxa grown under varied irradiance. Journal of the American Society for Horticultural Science, 129, 46-53.

Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. 2021. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Frontiers in Plant Science, 12, 726568.

He P, Ding X P, Bai J, Zhang J W, Liu P, Ren B Z, Zhao B. 2022. Maize hybrid yield and physiological response to plant density across four decades in China. Agronomy Journal, 114, 2886.

Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell & Environment, 37, 2077-2085.

Huang G M, Liu Y R, Guo Y L, Peng C X, Tan W M, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research, 260, 107982.

Jafari F, Wang B B, Wang H Y, Zhou J J. 2024. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. Journal of Integrative Plant Biology, 66, 849-864.

Lacasa J, Ciampitti I A, Amas J I, Curín F, Luque S F, Otegui M E. 2022. Breeding effects on canopy light attenuation in maize: A retrospective and prospective analysis. Journal of Experimental Botany, 73, 1301-1311.

Laurance W F, Sayer J, Cassman K G. 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution, 29, 107-116.

Li R F, Liu P, Dong S T, Zhang J W, Zhao B. 2019. Increased maize plant population induced leaf senescence, suppressed root growth, nitrogen uptake, and grain yield. Agronomy Journal, 111, 1581-1591.

Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H. 2016. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 4, 1-6. (in Chinese)

Li T, Liu L N, Jiang C D, Liu Y J, Shi L. 2014. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. Journal of Photochemistry and Photobiology B (Biology), 137, 31-38.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Xu W J, Liu W M, Yang Y S, Li S K. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha-1. Field Crops Research, 213, 221-230.

Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, Hou P, Li S K. 2022. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security, 11, e375. 

Long C Z. 2019. Effect of planting density on yield and major agronomic traits of maize varieties. Seed Science & Technology, 37, 9-15. (in Chinese)

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 14, 2637.

Ma D, Xie R, Niu X, Li S, Long H, Liu Y. 2014. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. European Journal of Agronomy, 58, 1-10.

Ma D, Xie R, Yu X, Li S, Gao J. 2022. Historical trends in maize morphology from the 1950s to the 2010s in China. Journal of Integrative Agriculture, 21, 2159-2167.

Makoi J H J R, Chimphango S B M, Dakora F D. 2010. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica, 48, 143-155.

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141–1157.

Di Matteo J A, Ferreyra J M, Cerrudo A A, Echarte L, Andrade F H. 2016. Yield potential and yield stability of argentine maize hybrids over 45 years of breeding. Field Crops Research, 197, 107-116.

McCullough D E, Giradin P, Mihajlovic M, Aguilera A, Tollenaar M. 1994. Influence of N supply on development and dry matter accumulation of an old and new maize hybrid. Canadian Journal of Plant Science, 74, 471-477.

Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes M J, Martre P. 2012. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology, 160, 1479-1490.

Mu X, Chen Q, Chen F, Yuan L, Mi G. 2016. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Frontiers in Plant Science, 7, 699.

Niu X, Xie R, Liu X, Zhang F, Li S, Gao S. 2013. Maize yield gains in northeast china in the last six decades. Journal of Integrative Agriculture, 12, 630-637.

Pagano E, Cela S, Maddonni G A, Otegui M E. 2007. Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies. Field Crops Research, 102, 198-209.

Qian C J, Zhang W, Zhong X M, Li F H, Shi Z S. 2017. Comparative studies on the photosynthetic characteristics of two maize (Zea mays L.) near-isogenic lines differing in their susceptibility to low light intensity. Emirates Journal of Food and Agriculture, 29, 300-311.

Ren B Z, Cui H Y, Camberato J J, Dong S T, Liu P, Zhao B, Zhang J W. 2016. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize. The Science of Nature, 103, 67.

Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Zhang J W. 2017a. Photosynthetic characteristics of summer maize hybrids with different plant heights. Agronomy Journal, 109, 1454-1462.

Ren B Z, Liu W, Zhang J W, Dong S T, Liu P, Zhao B. 2017b. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. The Science of Nature, 104, 12.

Russell W A. 1991. Genetic improvement of maize yields. Advances in Agronomy, 46, 245-298.

Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. 2002. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 79, 39-51.

Sarlangue T, Andrade F H, Calvino P A, Purcell L C. 2007. Why do maize hybrids respond differently to variations in plant density? Agronomy Journal, 99, 984–991.

Song Q F, Wang Y, Qu M N, Ort D R, Zhu X G. 2017. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency—Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant, Cell & Environment, 40, 2946-2957.

Tazoe Y, Noguchi K, Terashima I. 2005. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant, Cell & environment, 29, 691-700.

Tokatlidis I S, Koutroubas S D. 2004. A review of maize hybrids dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 88, 103-114.

Tollenaar M, Lee E A. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 75, 161-169.

Tollenaar M, Wu J. 1999. Yield improvement intemperate maize is attributable to greater stress tolerance. Crop Science, 39, 1597-1604.

Uribelarrea M, Crafts-Brandner S, Below F. 2009. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant & Soil, 316, 151-160.

Vandeleur R K, Gill G S. 2004. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Australian Journal of Agricultural Research, 55, 855-861.

Wang K J, Dong S T, Hu C H, Liu K C, Sun Q Q. 2001. Improvement in photosynthetic characteristics among maize varieties in China from the 1950s to the 1990s. Chinese Journal of Plant Ecology, 25, 247-251. (in Chinese)

Wang X H, Müller C, Elliot J, Mueller N D, Ciais P, Jägermeyr J, Gerber J, Dumas P, Wang C Z, Yang H, Li L, Deryng D, Folberth C, Liu W F, Makowski D, Olin S, Pugh T A M, Reddy A, Schmid E, Jeong S, et al. 2021. Global irrigation contribution to wheat and maize yield. Nature Communications, 12, 1235.

Wang Y W, Xu C, Li K, Cai X J, Wu M, Chen G X. 2017. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environmental Science & Pollution Research, 24, 1380-1388.

Wang Z C, Kang S Z, Jensen C R, Liu F L. 2012. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. Journal of Experimental Botany, 63, 1145-1153.

Weiner J, Andersen S B, Wille W K M, Griepentrog H W, Olsen J M. 2010. Evolutionary agroecology: The potential for cooperative, high density, weed-suppressing cereals. Evolutionary Application, 3, 473-479.

Yan Y Y, Niu L, Li J, Hou P, Dai T B, Li S K, Zhou W B. 2019. Yield and photosynthetic characteristics of high-yielding maize varieties in response to density. In: 2019 Annual Academic Conference of the Crop Society of China. Institute of Crop Science, Chinese Academy of Agricultural Sciences; College of Agriculture, Nanjing Agricultural University; Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences Publishing, Zhejiang, China. (in Chinese)

Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. 2022. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. Journal of Plant Nutrition Fertilizers, 28, 1003-1014. (in Chinese)

Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F. 2016. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Research, 188, 10-16.

Yin L J, Xu H C, Dong S X, Chu J P, Dai X L, He M R. 2019. Optimised nitrogen allocation favours improvement in canopy photosynthetic nitrogen-use efficiency: Evidence from late-sown winter wheat. Environmental & Experimental Botany, 159, 75-86.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2021. Leaf-nitrogen status affects grain yield formation through modification of spike differentiation in maize. Field Crops Research, 271, 108238.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2022. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. European Journal of Agronomy, 137, 126520.

Zhai L C, Xie R Z, Wang P, Liu G Z, Fan P P, Li S K. 2016. Impact of recent breeding history on the competitiveness of Chinese maize hybrids. Field Crops Research, 191, 75-82.

Zhao Z H, Yang M, Yang L M, Yuan Q, Chi X Y, Liu W P. 2020. Predicting the spread of forest diseases and pests. IEEE Access, 8, 199803-199812.

Zhang M, Chen T, Hojatollah L, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. 2018. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? Journal of Integrative Agriculture, 17, 1745-1757.

Zhang R Y, Xu G, Li J S, Yan J B, Li H H, Yang X H. 2018. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theoretical and Applied Genetics, 131, 1207-1221.

Zhang X D, Yang L C, Xue X K, Kamran M, Ahmad I, Dong Z Y, Liu T N, Jia Z K, Zhang P, Han Q F. 2019. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Research, 233, 101-113.

Zhang Z M, Liu F M, Liu X Y. 1998. Genetic contributions to kernel yield and yield components of hybrid maize, 1963 to 1993 in Henan Province. Acta Agronomica Sinica, 24, 182-186. (in Chinese)

Zhang Z X. 1986. Determination of plant chlorophyll content, Acetone-ethanol mixture method. Liaoning Agricultural Sciences, 21, 28-30. (in Chinese)

No related articles found!
No Suggested Reading articles found!