Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1150-1164    DOI: 10.1016/j.jia.2024.06.007
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus)

Yulong Guo1, Wanzhuo Geng1, Botong Chen1, Zhimin Cheng1, Yihao Zhi1, Yanhua Zhang1, 2, 3, Donghua Li1, 2, 3, Ruirui Jiang1, 2, 3, Zhuanjian Li1, 2, 3, Yadong Tian1, 2, 3, Xiangtao Kang1, 2, 3, Hong Li1,  2, 3#, Xiaojun Liu1, 2, 3#

1 College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China

2 Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China

3 International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China

 Highlights 
Fourteen BMP family members were identified in chickens, evolutionarily conserved and involved in directed breeding.
BMP7 intronic SNPs associate with chicken growth, carcass and serum lipid traits, regulating myogenesis and adipogenesis.
BMP2/BMP6/GDF7 contribute to both meat- and egg-type lines, while BMP7 favors meat-type trait development.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

骨形态发生蛋白(BMP)基因家族由一组多功能细胞因子构成,在脊椎动物的肢体发育、骨形成、脂肪沉积和繁殖性能调控等方面发挥重要作用。然而,目前鸡BMP基因家族尚未得到系统的鉴定和全面的功能分析。本研究首先利用生物信息学方法鉴定鸡基因组中BMP基因家族成员,并从系统发育、基因结构、表达模式及定向选择等方面对家族成员进行系统分析,探讨它们在进化和人工选择过程中的作用;然后利用基因功能获得和缺失策略,结合qRT-PCR、CCK-8、EdU、免疫荧光、流式细胞术、ELISA、油红O染色等实验技术,对BMP7基因在脂质合成、沉积及肌肉发育中的功能作用进行了深入研究。结果表明,鸡BMP基因家族共有14个成员,可分为BMP2/4、BMP5/6/7/8A、生长分化因子(GDF)2/BMP10、GDF5/6/7和GDF11/BMP3/15亚家族。BMP基因家族在商品肉鸡和蛋鸡的人工选择中发挥重要作用,其中BMP2BMP6GDF7基因对肉用型和蛋用型鸡品系的形成有显著贡献,而BMP7基因对肉用型鸡品系的形成有较大的贡献。BMP7基因内含子区域的单核苷酸多态性(SNPs)与体重、胸肌重、腿重、腹脂重、血清总胆固醇(T-CHO)、甘油三酯(TG)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)含量显著相关。BMP7基因在鸡原代成肌细胞、肌内前脂肪细胞和腹部前脂肪细胞增殖和分化不同阶段的表达存在显著差异,可促进肝细胞的脂质合成;促进成肌细胞的增殖、分化和胞内脂质沉积;促进肌内前脂肪细胞的增殖但抑制其成脂分化;促进腹部前脂肪细胞的增殖和成脂分化。综上所述,BMP基因家族成员中的SNPs与生长、产蛋和脂肪沉积等性状显著相关,在鸡定向选择中发挥重要作用;其中,BMP7基因可以调控脂质合成、沉积和肌肉发育。这些结果为鸡生长发育、繁殖调控和脂肪沉积理论提供了新的见解,为鸡育种选择提供了新思路。



Abstract  

The bone morphogenetic protein (BMP) gene family comprises a group of multifunctional cytokines that play important roles in limb development, bone formation, fat deposition, and reproductive traits of vertebrates.  However, no systematic and comprehensive investigations of the various traits of the whole family members have been conducted, particularly in chickens.  Here, we performed genome-wide screening and identified 14 BMP genes, which were classified into the BMP2/4, BMP5/6/7/8A, growth differentiation factor (GDF) 2/BMP10, GDF5/6/7, and GDF11/BMP3/15 subfamilies.  Genetic variation pattern analysis showed that BMP genes were responsible for the artificial selection of commercial broilers and layers, with BMP2, BMP6, and GDF7 likely contributing significantly to the formation of both specialized meat- and egg-type lines, whereas BMP7 likely contributed more to the formation of meat-type lines.  Genetic association analysis showed that single nucleotide polymorphisms (SNPs) in the BMP7 intron region were associated with body weight, breast muscle weight, leg weight, abdominal fat weights and contents of total cholesterol (T-CHO), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) in serum.  Additionally, gain- and loss-of-function assays demonstrated that BMP7 promoted the proliferation, myogenic differentiation, and lipid droplet accumulation in myoblasts; enhanced lipid synthesis in hepatocytes; promoted the proliferation and inhibited adipogenic differentiation of intramuscular preadipocytes; and induced the proliferation and adipogenic differentiation of abdominal preadipocytes.  These results provide novel insights into the role of BMP genes in chicken growth, reproductive regulation, and lipid deposition and could be used to develop genetic markers for breeding selection in chickens.

Keywords:  BMP gene family       expression regulation        BMP7        myogenesis        adipogenesis  
Received: 14 December 2023   Accepted: 28 April 2024 Online: 27 June 2024  
Fund: This study was supported by the Natural Science Foundation of China (grant numbers 32272867, 32372871, and 32172720) and the National Key Research and Development Program (grant number 2022YFF1000202).
About author:  Yulong Guo, E-mail: sxauguoyulong@126.com; #Correspondence Hong Li, E-mail: lihong19871202@163.com; Xiaojun Liu, E-mail: xjliu2008@hotmail.com

Cite this article: 

Yulong Guo, Wanzhuo Geng, Botong Chen, Zhimin Cheng, Yihao Zhi, Yanhua Zhang, Donghua Li, Ruirui Jiang, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Hong Li, Xiaojun Liu. 2026. Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus). Journal of Integrative Agriculture, 25(3): 1150-1164.

Aluganti Narasimhulu C, Singla D K. 2020. The role of bone morphogenetic protein 7 (BMP-7) in inflammation in heart diseases. Cells9, 280.

An L, Shi Q, Zhu Y, Wang H, Peng Q, Wu J, Cheng Y, Zhang W, Yi Y, Bao Z. 2021. Bone morphogenetic protein 4 (BMP4) promotes hepatic glycogen accumulation and reduces glucose level in hepatocytes through mTORC2 signaling pathway. Genes & Diseases8, 531–544.

Asharani P, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P. 2012. Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. The American Journal of Human Genetics90, 661–674.

Bai D, Chen Y, Hu Y, He W F, Shi Y, Fan Q, Luo R, Li A. 2020. Transcriptome analysis of genes related to gonad differentiation and development in Muscovy ducks. BMC Genomics21, 1–17.

Beck T, Rowlands T, Shorter T, Brookes A J. 2023. GWAS central: An expanding resource for finding and visualising genotype and phenotype data from genome-wide association studies. Nucleic Acids Research51, D986–D993.

Boon M R, van den Berg S A, Wang Y, van den Bossche J, Karkampouna S, Bauwens M, De Saint-Hubert M, van der Horst G, Vukicevic S, de Winther M P. 2013. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS ONE8, e74083.

Borok M J, Mademtzoglou D, Relaix F. 2020. Bu-MP-ing iron: How BMP signaling regulates muscle growth and regeneration. Journal of Developmental Biology8, 4.

Bubner B, Baldwin I T. 2004. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Reports23, 263–271.

Calabrese C, Mangiulli M, Manzari C, Paluscio A M, Caratozzolo M F, Marzano F, Kurelac I, D’Erchia A M, D’Elia D, Licciulli F. 2013. A platform independent RNA-seq protocol for the detection of transcriptome complexity. BMC Genomics14, 1–11.

Cameron T L, Belluoccio D, Farlie P G, Brachvogel B, Bateman J F. 2009. Global comparative transcriptome analysis of cartilage formation in vivoBMC Developmental Biology9, 1–17.

Carré G A, Couty I, Hennequet-Antier C, Govoroun M S. 2011. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS ONE6, e23959.

Casana E, Jimenez V, Jambrina C, Sacristan V, Muñoz S, Rodo J, Grass I, Garcia M, Mallol C, León X. 2022. AAV-mediated BMP7 gene therapy counteracts insulin resistance and obesity. Molecular Therapy-Methods & Clinical Development25, 190–204.

de Castro F C, Cruz M H C, Leal C L V. 2016. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-a review. Asian–Australasian Journal of Animal Sciences29, 1065.

Chung K, Smith S, Choi S, Johnson B. 2016. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes. Journal of Animal Science94, 1875–1883.

Danesh S M, Villasenor A, Chong D, Soukup C, Cleaver O. 2009. BMP and BMP receptor expression during murine organogenesis. Gene Expression Patterns9, 255–265.

Ducy P, Karsenty G. 2000. The family of bone morphogenetic proteins. Kidney International57, 2207–2214.

Egerman M A, Cadena S M, Gilbert J A, Meyer A, Nelson H N, Swalley S E, Mallozzi C, Jacobi C, Jennings L L, Clay I. 2015. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metabolism22, 164–174.

Friedrichs M, Wirsdöerfer F, Flohé S B, Schneider S, Wuelling M, Vortkamp A. 2011. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. BMC Cell Biology12, 1–17.

Gamer L W, Cox K A, Small C, Rosen V. 2001. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb. Developmental Biology229, 407–420.

Goldman D C, Donley N, Christian J L. 2009. Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mechanisms of Development126, 117–127.

Gu S, Wen C, Li J, Liu H, Huang Q, Zheng J, Sun C, Yang N. 2022. Temporal expression of myogenic regulatory genes in different chicken breeds during embryonic development. International Journal of Molecular Sciences23, 10115.

Guo Y, Tang H, Li Z, Zhang Y, Li D, Li W, Sun G, Kang X, Han R. 2020. High-throughput transcriptome analysis reveals potentially important relationships between lncRNAs and genes in broilers affected by Valgus-varus deformity (Gallus gallus). Gene743, 144511.

Guo Y, Zhang K, Geng W, Chen B, Wang D, Wang Z, Tian W, Li H, Zhang Y, Jiang R. 2023. Evolutionary analysis and functional characterization reveal the role of the insulin-like growth factor system in a diversified selection of chickens (Gallus gallus). Poultry Science102, 102411.

Hopkins D R, Keles S, Greenspan D S. 2007. The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biology26, 508–523.

Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. 2012. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS ONE7, e52123.

Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D. 2022. FATP1 exerts variable effects on adipogenic differentiation and proliferation in cells derived from muscle and adipose tissue. Frontiers in Veterinary Science9, 904879.

Jeanplong F, Falconer S J, Thomas M, Matthews K G, Oldham J M, Watson T, McMahon C D. 2012. Growth and differentiation factor-11 is developmentally regulated in skeletal muscle and inhibits myoblast differentiation. Open Journal of Molecular and Integrative Physiology2,127–138.

Jensen G S, Leon-Palmer N E, Townsend K L. 2021. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism123, 154837.

Ji H, Wang H, Ji Q, Ji W, Luo X, Wang J, Chai Z, Xin J, Cai X, Wu Z. 2020. Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes & Genomics42, 1347–1359.

Jin M, Fei X, Li T, Lu Z, Chu M, Di R, He X, Wang X, Wei C. 2022. Transcriptome study digs out BMP2 involved in adipogenesis in sheep tails. BMC Genomics23, 1–10.

Katagiri T, Watabe T. 2016. Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology8, a021899.

Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan D S. 1996. Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science271, 360–362.

Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann M S, Salem A K. 2017. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. The AAPS Journal19, 438–446.

Komolka K, Albrecht E, Wimmers K, Michal J J, Maak S. 2014. Molecular heterogeneities of adipose depots-potential effects on adipose-muscle cross-talk in humans, mice and farm animals. Journal of Genomics2, 31.

Lei L, Zhu J, Chen C, Wang Y, Wu C, Qi M, Wang Y, Liu X, Hong X, Yu L. 2023. Genome-wide identification, evolution and expression analysis of bone morphogenetic protein (BMP) gene family in Chinese soft-shell turtle (Pelodiscus sinensis). Frontiers in Genetics14, 1109478.

Li F, Liu J, Liu W, Gao J, Lei Q, Han H, Yang J, Li H, Cao D, Zhou Y. 2021. Genome-wide association study of body size traits in Wenshang Barred chickens based on the specific-locus amplified fragment sequencing technology. Animal Science Journal92, e13506.

Li H, Wang T, Xu C, Wang D, Ren J, Li Y, Tian Y, Wang Y, Jiao Y, Kang X. 2015. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. BMC Genomics16, 763.

Li Z, Cai B, Abdalla B A, Zhu X, Zheng M, Han P, Nie Q, Zhang X. 2019. LncIRS1 controls muscle atrophy via sponging miR15 family to activate IGF1-PI3K/AKT pathway. Journal of CachexiaSarcopenia and Muscle10, 391–410.

Liu W, Li D, Yang M, Wang L, Xu Y, Chen N, Zhang Z, Shi J, Li W, Zhao S. 2022. GREM2 is associated with human central obesity and inhibits visceral preadipocyte browning. EBioMedicine78, 103969.

Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. 2022. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Frontiers in Genetics13, 938473.

McPherron A C, Lawler A M, Lee S J. 1999. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nature Genetics22, 260–264.

Miyazono K, Kamiya Y, Morikawa M. 2010. Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry147, 35–51.

Mostofa F, Yasid N A, Shamsi S, Ahmad S A, Mohd-Yusoff N F, Abas F, Ahmad S. 2022. In silico study and effects of BDMC33 on TNBS-induced BMP gene expressions in zebrafish gut inflammation-associated arthritis. Molecules27, 8304.

Narasimhulu C A, Singla D K. 2023. BMP-7 attenuates sarcopenia and adverse muscle remodeling in diabetic mice via alleviation of lipids, inflammation, HMGB1, and pyroptosis. Antioxidants12, 331.

Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris L H, Abdull Razis A F. 2021. Molecular regulation of lipogenesis, adipogenesis and fat deposition in chicken. Genes12, 414.

Qiu Y Y, Zhang H S, Tang Y, Liu F Y, Pang J Q, Zhang X Y, Xiong H, Liang Y S, Zhao H Y, Chen S J. 2021. Mitochondrial dysfunction resulting from the down-regulation of bone morphogenetic protein 5 may cause microtia. Annals of Translational Medicine9, 5.

Robert A W, Angulski A B B, Spangenberg L, Shigunov P, Pereira I T, Bettes P S L, Naya H, Correa A, Dallagiovanna B, Stimamiglio M A. 2018. Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Scientific Reports8, 4739.

Rubin C J, Zody M C, Eriksson J, Meadows J R, Sherwood E, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature464, 587–591.

Shah T A, Rogers M B. 2018. Unanswered questions regarding sex and BMP/TGF-β signaling. Journal of Developmental Biology6, 14.

Shao G, Luo L, Jiang S, Deng C, Xiong Y, Li F. 2011. AC/T mutation in microRNA target sites in BMP5 gene is potentially associated with fatness in pigs. Meat Science87, 299–303.

Sharma A, Huard C, Vernochet C, Ziemek D, Knowlton K M, Tyminski E, Paradis T, Zhang Y, Jones J E, von Schack D. 2014. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS ONE9, e92608.

Shimasaki S, Moore R K, Otsuka F, Erickson G F. 2004. The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews25, 72–101.

Urist M R. 1965. Bone: Formation by autoinduction. Science150, 893–899.

Wang D, Li X, Zhang P, Cao Y, Zhang K, Qin P, Guo Y, Li Z, Tian Y, Kang X. 2022. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken (Gallus gallus). BMC Genomics23, 1–13.

Wang D, Qin P, Zhang K, Wang Y, Guo Y, Cheng Z, Li Z, Tian Y, Kang X, Li H. 2023. Integrated LC/MS-based lipidomics and transcriptomics analyses revealed lipid composition heterogeneity between pectoralis intramuscular fat and abdominal fat and its regulatory mechanism in chicken. Food Research International172, 113083.

Wang L, Li J, Liu E, Kinnebrew G, Zhang X, Stover D, Huo Y, Zeng Z, Jiang W, Cheng L. 2019. Identification of alternatively-activated pathways between primary breast cancer and liver metastatic cancer using microarray data. Genes10, 753.

Wang M S, Huo Y X, Li Y, Otecko N O, Su L Y, Xu H B, Wu S F, Peng M S, Liu H Q, Zeng L. 2016. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. Journal of Molecular Cell Biology8, 542–552.

Wang R N, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S. 2014. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & Diseases1, 87–105.

Wang S, Zhou G, Shu G, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Yuan L, Jiang Q. 2013. Glucose utilization, lipid metabolism and BMP-Smad signaling pathway of porcine intramuscular preadipocytes compared with subcutaneous preadipocytes. Cellular Physiology and Biochemistry31, 981–996.

Wang Y, Liu S, Yan Y, Li S, Tong H. 2019. SPARCL1 promotes C2C12 cell differentiation via BMP7-mediated BMP/TGF-β cell signaling pathway. Cell Death & Disease10, 852.

Wang Z, Yue Y X, Liu Z M, Yang L Y, Li H, Li Z J, Li G X, Wang Y B, Tian Y D, Kang X T. 2019. Genome-wide analysis of the FABP gene family in liver of chicken (Gallus gallus): Identification, dynamic expression profile, and regulatory mechanism. International Journal of Molecular Sciences20, 5948.

Wu F J, Luo C W. 2014. Characterization of the signaling and ovarian functions of bone morphogenetic protein 8. Endocrine Abstracts35, P665.

Wu W, Zhang D, Yin Y, Ji M, Xu K, Huang X, Peng Y, Zhang J. 2019. Comprehensive transcriptomic view of the role of the LGALS12 gene in porcine subcutaneous and intramuscular adipocytes. BMC Genomics20, 1–13.

Yan L, Gao R, Liu Y, He B, Lv S, Hao D. 2017. The pathogenesis of ossification of the posterior longitudinal ligament. Aging and Disease8, 570.

Yang Z, Li P, Shang Q, Wang Y, He J, Ge S, Jia R, Fan X. 2020. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Science Advances6, eabc5022.

Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q. 2000. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Molecular Endocrinology14, 1053–1063.

Zhang C, Xu X, Xu X, Li Y, Zhao P, Chen X, Shen X, Zhang Z, Chen Y, Liu S. 2022. Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour. Gene826, 146453.

Zhang M, Li F, Ma X, Li W, Jiang R, Han R, Li G, Wang Y, Li Z, Tian Y. 2019. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitroBMC Genomics20, 1–15.

Zhang M, Ma X, Zhai Y, Zhang D, Sui L, Li W, Jiang R, Han R, Li G, Li Z. 2020. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis. Journal of Agricultural and Food Chemistry68, 3678–3688.

Zhang M, Zheng D, Peng Z, Zhu Y, Li R, Wu Q, Li Y, Li H, Xu W, Zhang M. 2021. Identification of differentially expressed genes and lipid metabolism signaling pathways between muscle and fat tissues in broiler chickens. The Journal of Poultry Science58, 131–137.

Zhang Y, Wang Y, Li Y, Wu J, Wang X, Bian C, Tian Y, Sun G, Han R, Liu X. 2021. Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F2 chicken population. Heredity126, 293–307.

Zhang Z, Yang W, Cao Y, Shi Y, Lei C, Du B, Li X, Zhang Q. 2015. The functions of BMP3 in rabbit articular cartilage repair. International Journal of Molecular Sciences16, 25934–25946.

Zhao G, Liaw L, Hogan B L. 1998. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development125, 1103–1112.

Zhong S, Wang Y, Li J, Wang M, Meng L, Ma Z, Zhang S, Liu Z. 2018. Spatial and temporal expression of bmp8a and its role in regulation of lipid metabolism in zebrafish Danio rerio. Gene Reports10, 33–41.

Zhou G, Wang S, Wang Z, Zhu X, Shu G, Liao W, Yu K, Gao P, Xi Q, Wang X. 2010. Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. Meat Science86, 440–450.

Zimmers T A, Jiang Y, Wang M, Liang T W, Rupert J E, Au E D, Marino F E, Couch M E, Koniaris L G. 2017. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Research in Cardiology112, 1–12.

[1] Shuqi Qin, Chaocheng Li, Haiyan Lu, Yulong Feng, Tao Guo, Yusong Han, Yongsheng Zhang, Zhonglin Tang.

Biology of Hippo signaling pathway: Skeletal muscle development and beyond [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1825-1838.

[2] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
No Suggested Reading articles found!