Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities

Yunrui Chen1*, Dayong Fan2*, Ziliang Li1, Yujie Zhang1, Yang He1, Minzhi Chen1, Wangfeng Zhang1, Yali Zhang1#

1 Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China

2 State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

水力理论预测叶片水力导度(Kleaf)与气孔导度(gs)之间存在正相关关系;然而,这一理论并未得到充分的观察支持,其潜在机制仍不清楚。目前,将Kleaf细分为木质部内水力导度(Kx)和木质部外水力导度(Kox)为阐明Kleafgs的调节机制提供了新的视角。最优的种植密度可以通过优化gs来提高水分利用效率(WUE);然而,在这一过程中叶片水力特性的变化及其对gsWUE的调节机制尚不明确。我们研究了KxKoxgs、光合速率(AN)和WUE之间的关系,并调查了在1218243648607284/平方米的8种种植密度下,影响Kox的结构基础。结果显示,随着种植密度的增加,KleafAN保持一致,而Koxgs显著下降。Kox受叶厚度和细胞间空气空间体积分数的显著影响。KleafKxANgs没有相关性,但Koxgs表现出显著的正相关。此外,KoxWUE显著负相关。这些发现表明,Kox通过调节gs来减少水分损失,同时维持AN,从而在不同种植密度下提高棉花的WUE



Abstract  

Hydraulic theory predicts a positive coupling between leaf hydraulic conductance (Kleaf) and stomatal conductance (gs); however, this theory has not been fully supported by observations, and the underlying mechanisms remain unclear.  Currently, subdividing Kleaf into leaf hydraulic conductance inside xylem (Kx) and outside xylem (Kox) offers a new perspective for elucidating the regulatory mechanism of Kleaf on gs.  Optimal planting density can enhance water use efficiency (WUE) by optimizing gs; however, the changes in leaf hydraulic properties during this process and its regulation of gs and WUE remain unclear.  We examined the relationships between Kx and Kox with gs, photosynthetic rate (AN), and WUE, and investigated the structural basis determining Kox in cotton under eight planting densities of 12, 18, 24, 36, 48, 60, 72, and 84 plant m-².  The results showed that as the increase of planting density, Kleaf and AN remained consistent while Kox and gs decreased significantly.  Kox was significantly influenced by leaf thickness and the volume fraction of inter-cellular air space.  Kleaf and Kx showed no correlation with AN or gs, but Kox exhibited a significant positive correlation with gs.  Furthermore, Kox is significantly negatively correlated with WUE.  These findings suggest that Kox modulates gs to reduce water loss while maintaining AN, thereby enhancing WUE in cotton under various planting densities.

Keywords:  cotton       leaf hydraulic conductance        water use efficiency        planting density        mesophyll structure        stomatal conductance  
Online: 12 November 2024  
Fund: 
This research was financially supported by the Tianshan Talent Development Program for Yali Zhang, the Natural Science Foundation of Xinjiang Production and Construction Corps (2024DA002), the Earmarked Fund for XJARS-Cotton (XJARS-03).
About author:  #Correspondence Yali Zhang, E-mail: zhangyali_cn@foxmail.com, zhangyali_shzu@163.com *These authors contributed equally to this work.

Cite this article: 

Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. 2024. The critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.11.012

Aasamaa K, Sober A, Rahi M. 2001. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Australian Journal of Plant Physiology, 28, 765-774.

Blonder B, Violle C, Bentley L P, Enquist B J. 2011. Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.

de Boer H J, Drake P L, Wendt E, Price C A, Schulze E D, Turner N C, Nicolle D, Veneklaas E J. 2016. Apparent overinvestment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiology, 172, 2286-2299.

Boyer J S. 1974. Water transport in plants: Mechanism of apparent changes in resistance during absorption. Planta, 117, 187-207.

Brodribb T J, Feild T S, Jordan G J. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144, 1890-1898.

Brodribb T J, Holbrook N M, Gutierrez M V. 2002. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell and Environment, 25, 1435-1444.

Brodribb T J, Jordan G J. 2008. Internal coordination between hydraulics and stomatal control in leaves. Plant Cell and Environment, 31, 1557-1564.

Buckley T N, John G P, Scoffoni C, Sack L. 2015. How does leaf anatomy influence water transport outside the xylem? Plant Physiology, 168, 1616-1635.

Cochard H, Nardini A, Coll L. 2004. Hydraulic architecture of leaf blades: Where is the main resistance? Plant, 27, 1257-1267.

Corrêa F F, Madail R H, Barbosa S, Pereira M P, Castro E M, Soriano C T G, Pereira F J. 2015. Anatomy and physiology of Cattail as related to different population densities. Planta Daninha, 33, 1-12.

Corso D, Delzon S, Lamarque L J, Cochard H, Torres‐Ruiz J M, King A, Brodribb T. 2020. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Plant, 43, 854-865.

Farquhar G, Richards R. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11, 539-552.

Gao J, Chen J Y, Lei Y, Wang Q, Zou J Q, Ning Z L, Tan X M, Yang F, Yang W Y. 2023. Functional consequences of light intensity on soybean leaf hydraulic conductance: Coordinated variations in leaf venation architecture and mesophyll structure. Environmental and Experimental Botany, 210, 105301.

Gonzalez J A, Mercado M I, Martinez-Calsina L, Erazz L E, Buedo S E, Gonzalez D A, Ponessa G I. 2022. Plant density effects on quinoa yield, leaf anatomy, ultrastructure and gas exchange. Journal of Agricultural Science, 160, 349-359.

Huang G J, Zhang Q Q, Wei X H, Peng S, Li Y. 2017. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Frontiers in Plant Science, 8, 945.

John G P, Scoffoni C, Sack L. 2013. Allometry of cells and tissues within leaves. American Journal of Botany, 100, 1936-1948.

Maria J H, Fernando M, Federico R, Gustavo L, Pilar P. 2016. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes. Annals of Botany, 117, 1063-1071.

Liu C, He N, Zhang J, Li Y, Wang Q, Sack L, Yu G. 2018. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28.

Liu X R, Liu H, Gleason S M, Goldstein G, Zhu S D, He P C, Hou H, Li R H, Ye Q. 2019. Water transport from stem to stomata: The coordination of hydraulic and gas exchange traits across 33 subtropical woody species. Tree Physiology, 39, 1665-1674.

Locke A M, Ort D R. 2014. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture. Journal of Experimental Botany, 65, 6617-6627.

Lu Z F, Xie K L, Pan Y H, Ren T, Lu J W, Wang M, She Q R, Guo S W. 2019. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy. Plant Cell and Environment, 42, 2231-2244.

Meidner H. 1976. Water vapour loss from a physical model of a substomatal cavity. Journal of Experimental Botany, 27, 691-694.

Meinzer F C, Woodruff D R, Domec J C, Goldstein G, Campanello P I, Gatti M G, Villalobos-Vega R. 2008. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia, 156, 31-41.

Nardini A, Gortan E, Salleo S. 2005. Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Functional Plant Biology, 32, 953-961.

North G B, Lynch F H, Maharaj F D R, Phillips C A, Woodside W T. 2013. Leaf hydraulic conductance for a tank bromeliad: Axial and radial pathways for moving and conserving water. Frontiers in Plant Science, 4, 78.

Ocheltree T W, Nippert J B, Prasad P V V. 2016. A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. The New Phytologist, 210, 97-107.

Outlaw W H. 2003. Integration of cellular and physiological functions of guard cells. Critical Reviews in Plant Sciences, 22, 503-529.

Pittermann J, Limm E, Rico C, Christman M A. 2011. Structure–function constraints of tracheid‐based xylem: A comparison of conifers and ferns. New Phytologist, 192, 449-461.

Prior L D, Eamus D. 2000. Seasonal changes in hydraulic conductance, xylem embolism and leaf area in Eucalyptus tetrodonta and Eucalyptus miniata saplings in a north Australian savanna. Plant Cell and Environment, 23, 955-965.

Ramírez-Valiente J A, Deacon N J, Etterson J, Center A, Sparks J P, Sparks K L, Longwell T, Pilz G, Cavender-Bares J. 2018. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Molecular Ecology, 27, 2176-2192.

Ruiz R A, Bertero H D. 2008. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy, 29, 144-152.

Sack L, Cowan P D, Jaikumar N, Holbrook M. 2003. The ‘Hydrology’ of leaves: Co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343–1356.

Sack L, Dietrich E M, Streeter C M, Sanchez-Gomez D, Holbrook N M. 2008. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 105, 1567-1572.

Sack L, Frole K. 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491. 

Sack L, Holbrook N M. 2006. Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.

Sack L, Melcher P J, Zwieniecki M A, Holbrook N M. 2002. The hydraulic conductance of the angiosperm leaf lamina: A comparison of three measurement methods. Journal of Experimental Botany, 53, 2177-2184.

Sack L, Scoffoni C. 2012. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM). Jove-Journal of Visualized Experiments, 70, 4179.

Sack L, Streeter C M, Holbrook N M. 2004. Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiology, 134, 1824-1833.

Sack L, Tyree M T, Holbrook N M. 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 167, 403-413.

Salleo S, Raimondo F, Trifilo P, Nardini A. 2003. Axial-to-radial water permeability of leaf major veins: A possible determinant of the impact of vein embolism on leaf hydraulics? Plant Cell and Environment, 26, 1749-1758.

Scoffoni C. 2015. Modelling the outside-xylem hydraulic conductance: Towards a new understanding of leaf water relations. Plant, Cell & Environment, 38, 4-6.

Scoffoni C, Chatelet D S, Pasquet-kok J, Rawls M, Donoghue M J, Edwards E J, Sack L. 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2, 16072.

Scoffoni C, Sack L. 2015. Are leaves 'freewheelin'? Testing for a Wheeler-type effect in leaf xylem hydraulic decline. Plant Cell and Environment, 38, 534-543.

Sterck F J, Zweifel R, Sass-Klaassen U, Chowdhury Q. 2008. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiology, 28, 529-536.

Sun S J, Chen Z J, Jiang H, Zhang X D, Zhang L L, Chi D C. 2019. Plastic mulch and plant density influencing soil water content and yield of rainfed maize in North-Eastern China. Irrigation and Drainage, 68, 354-364.

Talbott L D, Zeiger E. 1998. The role of sucrose in guard cell osmoregulation. Journal of Experimental Botany, 49, 329-337.

Theroux-Rancourt G, Ethier G, Pepin S. 2013. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. Journal of Experimental Botany, 65, 741-754.

Toillon J, Fichot R, Dallé E, Berthelot A, Brignolas F, Marron N. 2013. Planting density affects growth and water-use efficiency depending on site in Populus deltoides×P. nigra. Forest Ecology and Management, 304, 345-354.

Tosens T, Nishida K, Gago J, Coopman R E, Cabrera H M, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J. 2016. The photosynthetic capacity in 35 ferns and fern allies: Mesophyll CO2 diffusion as a key trait. New Phytologist, 209, 1576-1590.

Trifilo P, Nardini A, Lo Gullo M A, Salleo S. 2003. Vein cavitation and stomatal behaviour of sunflower (Helianthus annuus) leaves under water limitation. Physiologia Plantarum, 119, 409-417.

Tyree M T, Yianoulis P. 1980. The site of water evaporation from sub-stomatal cavities, liquid path resistances and hydroactive stomatal closure. Annals of Botany, 46, 175-193.

Ueno O. 2001. Ultrastructural localization of photosynthetic and photorespiratory enzymes in epidermal, mesophyll, bundle sheath, and vascular bundle cells of the C4 dicot Amaranthus viridis. Journal of Experimental Botany, 52, 1003-1013.

Ueno O, Kawano Y, Wakayama M, Takeda T. 2006. Leaf vascular systems in C3 and C4 grasses: A two-dimensional analysis. Annals of Botany, 97, 611-621.

Verslues P E, Bailey-Serres J, Brodersen C, Buckley T N, Conti L, Christmann A, Dinneny J R, Grill E, Hayes S, Heckman R W, Hsu P K, Juenger T E, Mas P, Munnik T, Nelissen H, Sack L, Schroeder J, Testerink C, Tyerman S D, Umezawa T, et al. 2023. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell, 35, 67-108.

Xiong D, Douthe C, Flexas J. 2018. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell and Environment, 41, 436-450.

Xiong D, Flexas J, Yu T, Peng S, Huang J. 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist, 213, 572-583.

Xiong D L, Yu T T, Zhang T, Li Y, Peng S B, Huang J L. 2015. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. Journal of Experimental Botany, 66, 741-748.

Yang H W, Chai Q, Yin W, Hu F L, Qin A Z, Fan Z L, Yu A Z, Zhao C, Fan H. 2022. Yield photosynthesis and leaf anatomy of maize in inter- and mono-cropping systems at varying plant densities. Crop Journal, 10, 893-903.

Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F. 2016. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Research, 188, 10-16.

Zeiger E, Talbott L D, Frechilla S, Srivastava A, Zhu J X. 2002. The guard cell chloroplast: A perspective for the twenty-first century. New Phytologist, 153, 415-424.

Zhang D, Luo Z, Li W, Dong H. 2016. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 197, 1-9.

Zhang J L, Cao K F. 2009. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Functional Ecology, 23, 658-667.

No related articles found!
No Suggested Reading articles found!