Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 977-988    DOI: 10.1016/j.jia.2025.02.043
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening

Jieyu Dai1, Ze Xu1, 2, Qianjin Zhan1, Jingwen Zhu1, Lijun Cao3, 4, Zhanling Lu1, Yuting Xu1, Tongyang Kang1, Yanan Hu1#, Caiping Zhao1

1 College of Horticulture, Northwest A&F University, Yangling 712100, China

2 Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China

3 Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA

4 Department of Biology, Duke University, Durham, NC 27708, USA

 Highlights 
PpLOB1 positively regulates peach softening.
PpNAP4 activates PpLOB1 expression.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

软化是肉质果实成熟阶段的必然过程,极大地影响着果实的品质和贮藏时间。桃是温带地区重要的经济果树之一;然而,桃果实软化速度快,贮藏时间短,由此在生产和运输上产生了较大损失。同时,对于桃果实软化的相关研究报道仍较少。LOB/LBD 蛋白是植物生长发育的重要调控因子,至今已有多个家族成员被报道参与调控果实的软化过程。本文中鉴定得到了42个桃LOB/LBD家族成员,表达分析显示PpLOB1在成熟桃果实中大量表达。进化分析表明PpLOB1属于Class II 亚家族,并且与多个软化相关LOB/LBD蛋白表现出高同源性。PpLOB1的瞬时表达试验说明其正向调控桃果实的软化,进一步的分子生物学试验显示其能靶向激活PpPL1PpPL15的表达,从而调控果实的软化进程。此外,PpNAP4能作为PpLOB1的上游调控因子影响其表达,且与PpNAP6协同调控此过程。综上,本文揭示了PpNAP4PpLOB1组成的模块共同调控桃果实软化的分子机制。



Abstract  

Softening of fleshy fruits during ripening and postharvest is a programmed physiological process that substantially impacts fruit quality and shelf life.  However, the molecular mechanism underlying peach softening remains largely unknown.  Lateral organ boundary (LOB) domain (LBD) proteins are pivotal regulators of plant growth and development.  To date, certain LOB/LBD transcription factors are seemingly implicated in fruit softening.  In this study, we identified 42 LOB/LBD genes in the peach genome.  Expression analysis showed a significant upregulation of PpLOB1 transcripts toward peach fruit ripening.  PpLOB1 was classified into Class II subgroup, and showed high sequence similarity to several softening-related LOB/LBD transcription factors.  Transient transformation assays showed that PpLOB1 positively modulates peach softening.  Further experiments demonstrated that PpLOB1 directly targets and activates the promoters of pectate lyase 1 (PpPL1) and PpPL15, thereby contributing to the regulation of fruit softening.  Additionally, PpNAP4 up-regulates PpLOB1 expression by binding to its promoter.  Meanwhile, our findings revealed that PpNAP4 and PpNAP6 cooperatively modulate the expression of PpLOB1.  Taken together, our findings revealed a novel regulatory module involving PpNAP4 and PpLOB1 that modulates peach fruit softening.  

Keywords:  LOB/LBD       PpLOB1        PpNAP4        peach        softening  
Received: 08 November 2024   Accepted: 26 January 2025 Online: 20 February 2025  
Fund: 

This work was supported by grants from the China Postdoctoral Science Foundation (2023M742867), the High-level Innovation and Entrepreneurship Talents Program of QinChuangYuan, Shaanxi Province, China (QCYRCXM-2022-234) and the National Key R&D Program of China (2019YFD1000203). 

About author:  #Correspondence Yanan Hu, E-mail: huyn@nwafu.edu.cn

Cite this article: 

Jieyu Dai, Ze Xu, Qianjin Zhan, Jingwen Zhu, Lijun Cao, Zhanling Lu, Yuting Xu, Tongyang Kang, Yanan Hu, Caiping Zhao. 2026. Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening. Journal of Integrative Agriculture, 25(3): 977-988.

Ba L J, Kuang J F, Chen J Y, Lug W J. 2016. MaJAZ1 attenuates the MaLBD5-mediated transcriptional activation of jasmonate biosynthesis gene MaAOC2 in regulating cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry64, 738–745.

Ba L J, Shan W, Kuang J F, Feng B H, Xiao Y Y, Lu W J, Chen J Y. 2014. The banana MaLBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors regulate EXPANSIN expression and are involved in fruit ripening. Plant Molecular Biology Reporter32, 1103–1113.

Bell E M, Lin W C, Husbands A Y, Yu L, Jaganatha V, Jablonska B, Mangeon A, Neff M M, Girke T, Springer P S. 2012. Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Sciences of the United States of America109, 21146–21151.

Cao X, Wei C, Duan W, Gao Y, Kuang J, Liu M, Chen K, Klee H, Zhang B. 2021. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. The Plant Journal106, 785–800.

Cao X M, Li X Z, Su Y K, Zhang C, Wei C Y, Chen K S, Grierson D, Zhang B. 2023. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiology194, 2049–2068.

Carrari F, Fernie A R. 2006. Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany57, 1883–1897.

Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter11, 113–116.

Chen X D, Wang J, Zhao M Z, Yuan H Z. 2018. Identification and expression analysis of LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes in Fragaria vescaCanadian Journal of Plant Science98, 288–299.

Cho C, Jeon E, Pandey S K, Ha S H, Kim J. 2019. LBD13 positively regulates lateral root formation in ArabidopsisPlanta249, 1251–1258.

Collmer A, Ried J L, Mount M S. 1988. Assay methods for pectic enzymes. In: Methods in Enzymology. Academic Press, 161, 329–335.

Dai J Y, Xu Z, Xu Y T, Fang Z H, Shah K M, Kang T Y, Wu H X, Zhang D, Xing L B, Ma J J, Liu H K, Hu Y A, Zhao C P. 2023. A novel NAC transcription factor, PpNAP6, is involved in peach ripening by activating ethylene synthesis. Postharvest Biology and Technology201, 112363.

Dong L M, Manghwar H. 2023. Genome-wide expression analysis of LBD genes in tomato (Solanum lycopersicum L.) under different light conditions. Plant Signaling & Behavior18, 2290414.

Duan S, Jia H, Pang Z, Teper D, White F, Jones J, Zhou C, Wang N. 2018. Functional characterization of the citrus canker susceptibility gene CsLOB1Molecular Plant Pathology19, 1908–1916.

Forlani S, Mizzotti C, Masiero S. 2021. The NAC side of the fruit: Tuning of fruit development and maturation. BMC Plant Biology21, 238.

Fu C C, Chen H J, Gao H Y, Wang S L, Wang N, Jin J C, Lu Y, Yu Z L, Ma Q, Han Y C. 2021. Papaya CpMADS4 and CpNAC3 co-operatively regulate ethylene signal genes CpERF9 and CpEIL5 during fruit ripening. Postharvest Biology and Technology175, 111485.

Fu C C, Han Y C, Kuang J F, Chen J Y, Lu W J. 2017. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4CpLCY-e and CpCHY-b during fruit ripening. Plant and Cell Physiology58, 2155–2165.

Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, Jing Y, Meng L, Zhu B, Zhu H, Chen J, Jiang C Z, Grierson D, Luo Y, Fu D Q. 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research5, 75.

Gao Y, Zhang Y P, Fan Z Q, Jing Y, Chen J Y, Grierson D, Yang R, Fu D Q. 2021. Mutagenesis of SlNAC4 by CRISPR/Cas9 alters gene expression and softening of ripening tomato fruit. Vegetable Research1, 1–12.

Geng L P, Tan M F, Deng Q Y, Wang Y J, Zhang T, Hu X S, Ye M M, Lian X M, Zhou D X, Zhao Y. 2024. Transcription factors WOX11 and LBD16 function with histone demethylase JMJ706 to control crown root development in rice. The Plant Cell36, 1777–1790.

Geng M, Shao Y, Zhang M, Zheng X, Tan B, Wang W, Zhang L, Ye X, Li M, Li J, Cheng J, Feng J. 2022. Overexpression of peach NAC25 promotes anthocyanin biosynthesis in poplar shoots. Fruit Research2, 1–9.

Grimplet J, Pimentel D, Agudelo-Romero P, Martinez-Zapater J M, Fortes A M. 2017. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: Genome-wide characterization and expression analyses during developmental processes and stress responses. Scientific Reports7, 15968.

Gu C, Guo Z H, Cheng H Y, Zhou Y H, Qi K J, Wang G M, Zhang S L. 2019. A HD-ZIP II HOMEBOX transcription factor, PpHB.G7, mediates ethylene biosynthesis during fruit ripening in peach. Plant Science278, 12–19.

Guo Z H, Zhang Y J, Yao J L, Xie Z H, Zhang Y Y, Zhang S L, Gu C. 2021. The NAM/ATAF1/2/CUC2 transcription factor PpNAC.A59 enhances PpERF.A16 expression to promote ethylene biosynthesis during peach fruit ripening. Horticulture Research8, 209.

Gupta K, Gupta S. 2021. Molecular and in silico characterization of tomato LBD transcription factors reveals their role in fruit development and stress responses. Plant Gene27, 100309.

Han Z, Yang T, Guo Y, Cui W H, Yao L J, Li G, Wu A M, Li J H, Liu L J. 2021. The transcription factor PagLBD3 contributes to the regulation of secondary growth in PopulusJournal of Experimental Botany72, 7092–7106.

Jia R, Li C, Wang Y H, Qin X S, Meng L H, Sun X D. 2022. Genome-wide analysis of LBD transcription factor genes in Dendrobium catenatumInternational Journal of Melecular Sciences23, 2089.

Jin Z, Wang J, Cao X, Wei C, Kuang J, Chen K, Zhang B. 2022. Peach fruit PpNAC1 activates PpFAD3-1 transcription to provide omega-3 fatty acids for the synthesis of short-chain flavor volatiles. Horticulture Research9, uhac085.

Klee H J, Giovannoni J J. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics45, 41–59.

Kong Y M, Xu P, Jing X Y, Chen L X, Li L G, Li X. 2017. Decipher the ancestry of the plant-specific LBD gene family. BMC Genomics18, 951.

Li F, Li J, Qian M, Han M, Cao L, Liu H, Zhang D, Zhao C. 2016. Identification of peach NAP transcription factor genes and characterization of their expression in vegetative and reproductive organs during development and senescence. Frontiers In Plant Science7, 147.

Liang J X, Hou Z M, Liao J Y, Qin Y, Wang L L, Wang X M, Su W Q, Cai Z Y, Fang Y Y, Aslam M, Cheng Y, Zheng P. 2022. Genome-wide identification and expression analysis of LBD transcription factor genes in passion fruit (Passiflora edulis). International Journal of Molecular Sciences23, 4700.

Lin D, Zhu X, Qi B, Gao Z, Tian P, Li Z, Lin Z, Zhang Y, Huang T. 2022. SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato. Plant Biotechnology Journal20, 1456–1469.

Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo Y D, Zhang N. 2020. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science301, 110683.

Liu L, Zhang J L, Xu J Y, Li Y F, Lv H M, Wang F, Guo J X, Lin T, Zhao B, Li X X, Guo Y D, Zhang N. 2024. SlMYC2 promotes SlLBD40-mediated cell expansion in tomato fruit development. The Plant Journal118, 1872–1888.

Majer C, Hochholdinger F. 2011. Defining the boundaries: Structure and function of LOB domain proteins. Trends in Plant Science16, 47–52.

Mao J P, Niu C D, Li K, Fan L, Liu Z M, Li S H, Ma D D, Tahir M M, Xing L B, Zhao C P, Ma J J, An N, Han M Y, Ren X L, Zhang D. 2023. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. The Plant Cell35, 1202–1221.

Marín-Rodríguez M C, Smith D L, Manning K, Orchard J, Seymour G B. 2003. Pectate lyase gene expression and enzyme activity in ripening banana fruit. Plant Molecular Biology51, 851–857.

Martin-Pizarro C, Vallarino J G, Osorio S, Meco V, Urrutia M, Pillet J, Casanal A, Merchante C, Amaya I, Willmitzer L, Fernie A R, Giovannoni J J, Botella M A, Valpuesta V, Pose D. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell33, 1574–1593.

Migicovsky Z, Yeats T H, Watts S, Song J, Forney C F, Burgher-MacLellan K, Somers D J, Gong Y H, Zhang Z Q, Vrebalov J, van Velzen R, Giovannoni J G, Rose J K C, Myles S. 2021. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics12, 671300.

Ohashi-Ito K, Iwamoto K, Fukuda H. 2018. LOB DOMAIN-CONTAINING PROTEIN 15 positively regulates expression of VND7, a master regulator of tracheary elements. Plant and Cell Physiology59, 989–996.

Olsen A N, Ernst H A, Lo Leggio L, Skriver K. 2005. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science10, 79–87.

Pandey S K, Lee H W, Kim M J, Cho C, Oh E, Kim J. 2018. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in ArabidopsisThe Plant Journal95, 233–251.

Shi Y N, Vrebalov J, Zheng H, Xu Y M, Yin X R, Liu W L, Liu Z M, Sorensen I, Su G Q, Ma Q Y, Evanich D, Rose J K C, Fei Z J, Van Eck J, Thannhauser T, Chen K S, Giovannoni J J. 2021. A tomato LATERAL ORGAN BOUNDARIES transcription factor, SlLOB1, predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America118, e2102486118.

Song B B, Tang Z K, Li X L, Li J M, Zhang M Y, Zhao K J, Liu H N, Zhang S L, Wu J. 2020. Mining and evolution analysis of Lateral organ boundaries domain (LBD) genes in Chinese white pear (Pyrus bretschneideri). BMC Genomics21, 644.

Soyano T, Thitamadee S, Machida Y, Chua N H. 2008. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in ArabidopsisThe Plant Cell20, 3359–3373.

Sun Q, Jiang S, Zhang T, Xu H, Fang H, Zhang J, Su M, Wang Y, Zhang Z, Wang N, Chen X. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science289, 110286.

Tufekci E D. 2023. Genome-wide identification and analysis of Lateral Organ Boundaries Domain (LBD) transcription factor gene family in melon (Cucumis melo L.). Peer Journal11, e16020.

Wang R, Bai T, Gao H, Cui Y, Zhou R, Wang Z, Song S, Jiao J, Wang M, Wan R J S H. 2023. Genome-wide identification of LBD transcription factors in apple and the function of MdLBD16a in adventitious rooting and callus development. Scientia Horticulturae317, 112048.

Wu X, Wang Z, Du A, Gao H, Liang J, Yu W, Yu H, Fan S, Chen Q, Guo J, Xiao Y, Peng F. 2024. Transcription factor LBD16 targets cell wall modification/ion transport genes in peach lateral root formation. Plant Physiology194, 2472–2490.

Xu C, Luo F, Hochholdinger F. 2016. LOB domain proteins: Beyond lateral organ boundaries. Trends in Plant Science21, 159–167.

Xu Z, Dai J, Liang L, Shi P, Shah K, Liu H, Ma J, Xing L, Hu Y, Zhang D, Zhao C. 2023. A peach ethylene response factor PpERF61 is involved in fruit ripening by modulating ripening-related genes and PpSEP1Postharvest Biology and Technology206, 112584.

Xu Z, Dai J, Kang T, Shah K, Li Q, Liu K, Xing L, Ma J, Zhang D, Zhao C. 2022. PpePL1 and PpePL15 are the core members of the pectate lyase gene family involved in peach fruit ripening and softening. Frontiers in Plant Science13, 844055.

Zhang R X, Liu Y D, Zhang X, Chen X M, Sun J L, Zhao Y, Zhang J Y, Yao J L, Liao L, Zhou H, Han Y P. 2023. Two adjacent NAC transcription factors regulate fruit maturity date and flavor in peach. New Phytologist241, 632–649.

Zhang Y W, Li Z W, Ma B, Hou Q C, Wan X Y. 2020. Phylogeny and functions of LOB domain proteins in plants. International Journal of Molecular Sciences21, 2278.

Zhou H, Kui L W, Wang H, Gu C, Dare A P, Espley R V, He H, Allan A C, Han Y. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal82, 105–121.

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell and Physiology55, 119–135.

No related articles found!
No Suggested Reading articles found!