Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat

Shuwei Zhang1*, Jiajia Zhao2*, Haiyan Zhang1, Duoduo Fu1, Ling Qiao2, Bangbang Wu2, Xiaohua Li2, Yuqiong Hao2, Xingwei Zheng2, Zhen Liang3, Zhijian Chang1#, Jun Zheng2#

1 College of AgricultureKey Laboratory of Sustainable Dryland Agriculture (Coconstruction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taigu 030801, China 

2 Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China 

3 College of Life Sciences, Shanxi University, Taiyuan 030006, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

结构变异是小麦遗传变异的重要基础,在小麦基因组进化中发挥着重要作用。关于结构变异对表型和抗旱性的效应报道较少。本研究利用荧光原位杂交技术鉴定了晋麦47、晋麦84及构建的DH群体和回交导入(BC5F3)的染色体结构变异(SCVs)结果表明:晋麦47和晋麦84间存在一个简单易位,10PAVs和一个CNV变异,分布在10条染色体上。其中8SCVs15个农艺性状相关联DH群体中发现2A染色体上存在PAVs重组类型,该类型显著影响穗粒数。1BL/1RS易位和PAV.2D分别通过降低LI2-LI4UI, LI2-LI4降低株高,1BL/1RS还显著增加小穗数粒长和粒厚,PAV.2D则显著增加穗粒数(3.13%)另外,PAV.4A.1GL, PAV.6A与SL和TGW,以及PAV.6B对SL, GT和TGW的效应也得到了验证。对于抗旱性方面,PAV.2A, PAV.6A, PAV.1D, PAV.2DCNV.4B与抗旱系数显著关联。各结构变异间存在加性和交互作用。值得注意的是,在PAV.2B, PAV.2D,和CNV.4B多态区域检测到与产量性状相关的基因和QTL位点。总之,本研究证实了SCV在小麦农艺性状形成和抗旱性方面的遗传效应,鉴定的SCV将为小麦进行分子标记辅助遗传改良提供依据。



Abstract  

Structural variation is an important source of genetic variation in wheat and have been important in the evolution of the wheat’s genome. Few studies have examined the relationship between structural variations and agronomy and drought tolerance. The present study identified structural chromosome variations (SCVs) in a doubled haploid (DH) population and backcross introgression lines (BC5F3) derived from Jinmai 47 and Jinmai 84 using fluorescence in situ hybridization.  There are one simple translocation, 10 present/absent variations (PAVs), and one copy number variation (CNV) between Jinmai 47 and Jinmai 84, which distributed in 10 chromosomes.  Eight SCVs were associated with 15 agronomic traits. A PAV recombination occurred on chromosome 2A, which was associated with grain number per spike (GNS). The 1BL/1RS translocation and PAV.2D were associated with significant reductions in plant height, deriving from the effects on LI2-LI4 and UI, LI2-LI4, respectively.  PAV.2D was also contributed to an increase of 3.13% for GNS, 1BL/1RS significantly increased spikelet number, grain length (GL), and grain thickness (GT). The effect of PAV.4A.1 on GL, PAV.6A on spike length (SL) and thousand-grain weight (TGW), PAV.6B on SL, GT and TGW were identified and verified. PAVs on chromosomes 2A, 6A, 1D, 2D, and a CNV on chromosome 4B were associated with the drought tolerance coefficients.  Additive and interaction effects among SCVs were observed. Many previously cloned key genes and yield-related QTL were found in polymorphic regions of PAV.2B, PAV.2D, and CNV.4B.  Altogether, this study confirmed the genetic effect of SCVs on agronomy and drought tolerance, and identification of these SCVs will facilitate genetic improvement of wheat through marker-assisted selection.

Keywords:  wheat       structural chromosome variation              agronomy       drought tolerance       effect  
Online: 01 August 2024  
Fund: 
This project was supported by the Science and Technology Major Project of Shanxi Province, China (202201140601025-2), the Agricultural Science Research of Shanxi Agriculture University, China (2023BQ108), the Senior Foreign Experts introducing Project, China (G202204011L), and the Science and Technology Innovation Young Talent Team of Shanxi Province, China (202204051001019).
About author:  Shuwei Zhang, E-mail: zshuwei@sxau.edu.cn; #Correspondence Zhijian Chang, E-mail: wrczj@126.com; Jun Zheng, Tel: 86+-18835712419, E-mail: sxnkyzj@126.com * indicates the authors who contributed equally to this study.

Cite this article: 

Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. 2024. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.07.047

Allen B, Pezone A, Porcellini A, Muller M T, Masternak M M. 2017. Non-homologous end joining induced alterations in DNA methylation: A source of permanent epigenetic change. Oncotarget, 8, 40359–40372.

Alonge M, Wang X G, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel T H, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo A L, Tieman D M, Klee H, Kirsche M, Aganezov S, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182,145–161.e23.

Arora H, Singh R K, Sharma S, Sharma N, Panchal A, Das T, Prasad A, Prasad M. 2022. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Reports, 41, 1931–1944.

Boehm Jr J D, Zhang M Y, Cai X W, Morris C F. 2017. Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat. Plant Genome, 10, 1–11.

Catacchio C R, Alagna F, Perniola R, Bergamini C, Rotunno S, Calabrese F M, Crupi P, Antonacci D, Ventura M, Cardone M F. 2019. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Scientific Reports, 9, 2809.

Chen J Y, Tang Y Q, Yao L S, Wu H, Tu X Y, Zhuang L F, Qi Z J. 2019. Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Molecular Breeding, 39, 146.

Crow T, Ta J, Nojoomi S, Aguilar-Rangel M R, Torres Rodríguez J V, Gates D, Rellán-Álvarez R, Sawers R, Runcie D. 2020. Gene regulatory effects of a large chromosomal inversion in highland maize. Plos Genetics, 16, e1009213.

Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics, 27, 2156–2158.

Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE, 7, e33234.

Fransz P, Linc G, Lee C R, Aflitos S A, Lasky J R, Toomajian C, Ali H, Peters J, van Dam P, Ji X W, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger T E, de Jong H, et al. 2016. Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thaliana. The Plant Journal, 88, 159–178.

Gabay G, Wang H C, Zhang J L, Moriconi J I, Burguener G F, Gualano L D, Howell T, Lukaszewski A, Staskawicz B, Cho M J, Tanaka J, Fahima T, Ke H Y, Dehesh K, Zhang G L, Gou J Y, Hamberg M, Santa-María G E, Dubcovsky J. 2023. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature Communications, 14, 539.

Gabur I, Chawla H S, Lopisso D T, von Tiedemann A, Snowdon R J, Obermeier C. 2020. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Scientific Reports, 10, 4131.

Gabur I, Chawla H S, Snowdon R J, Parkin I A P. 2019. Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 132, 733–750.

Guo J, Guo J H, Li L, Bai X H, Huo X Y, Shi W P, Gao L F, Dai K L, Jing R L, Hao C Y. 2023. Combined linkage analysis and association mapping identifies genomic regions associated with yield-related and drought-tolerance traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 136, 250.

Gupta P K, Balyan H S, Sharma S, Kumar R. 2020. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 1569–1602.

Han G H, Liu S Y, Wang J, Jin Y L, Zhou Y L, Luo Q L, Liu H, Zhao H, An D G. 2020. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Disease, 104, 2940–2948.

He W C, He H Y, Yuan Q L, Zhang H, Li X X, Wang T Y, Yang Y X, Yang L B, Yang Y T, Liu X P, Wei H, Zhang H, Zhang B, Guo M L, Leng Y, Shi C L, Lv Y, Chen W, Wang X M, Zhang Z P, et al. 2024. Widespread inversions shape the genetic and phenotypic diversity in rice. Science Bulletin, 69, 593–596.

Hickey L T, Hafeez A N, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C X, Godwin I D, Hayes B J, Wulff B B H. 2019. Breeding crops to feed 10 billion. Nature Biotechnology, 37, 744–754.

Howell T, Hale I, Jankuloski L, Bonafede M, Gilbert M, Dubcovsky J. 2014. Mapping a region within the 1RS·1BL translocation in common wheat affecting grain yield and canopy water status. Theoretical and Applied Genetics, 127, 2695–2709.

Hsam S L K, Zeller F J. 2006. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breeding, 116, 119–122.

Hu Z L, Luo J T, Wan L R, Luo J, Li Y Z, Fu S L, Liu D C, Hao M, Tang Z X. 2022. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND-FISH landmarks. Cereal Research Communications, 50, 253–262.

Huang X Y, Zhu M Q, Zhuang L F, Zhang S Y, Wang J J, Chen X J, Wang D R, Chen J Y, Bao Y G, Guo J, Zhang J L, Feng Y G, Chu C G, Du P, Qi Z J, Wang H G, Chen P D. 2018. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 131, 1967–1986.

Huang Y M, Huang W, Meng Z, Braz G T, Li Y F, Wang K, Wang H, Lai J S, Jiang J M, Dong Z B, Jin W W. 2021. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 22, 237.

Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Ou S J, Liu J N, Ricci W A, Guo T T, Olson A, Qiu Y J, Della Coletta R, Tittes S, Hudson A I, Marand A P, Wei S, Lu Z Y, Wang B, Tello-Ruiz M K, Piri R D, Wang N, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 373, 655–662.

Jin K, Wang S F, Zhang Y Z, Xia M F, Mo Y Z, Li X L, Li G Y, Zeng Z Y, Xiong W, He Y. 2019. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cellular And Molecular Life Sciences, 76, 4275-4289.

Jin S K, Han Z G, Hu Y, Si Z F, Dai F, He L, Cheng Y, Li Y Q, Zhao T, Fang L, Zhang T Z. 2023. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant, 16, 678–693.

Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. 2019. Physical location of tandem repeats in the wheat genome and application for chromosome identification: An international journal of plant biology. Planta, 249, 663-675.

Li A L, Hao C Y, Wang Z Y, Geng S F, Jia M L, Wang F, Han X, Kong X C, Yin L J, Tao S, Deng Z Y, Liao R Y, Sun G L, Wang K, Ye X G, Jiao C Z, Lu H F, Zhou Y, Liu D C, Fu X D, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 15, 504519.

Li K, Debernardi J M, Li C, Lin H, Zhang C, Jernstedt J, Korff M V, Zhong J, Dubcovsky J. 2021a. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. The Plant Cell, 33, 3621–3644.  

Li X R, Guo T T, Wang J Y, Bekele W A, Sukumaran S, Vanous A E, McNellie J P, Tibbs-Cortes L E, Lopes M S, Lamkey K R, Westgate M E, McKay J K, Archontoulis S V, Reynolds M P, Tinker N A, Schnable P S, Yu J M. 2021b. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant, 14, 874–887.

Li Y Y, Xiao J H, Wu J J, Duan J L, Liu Y, Ye X G, Zhang X, Guo X P, Gu Y Q, Zhang L C, Jia J Z, Kong X Y. 2012. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytologist, 196, 282–291.

Liu J, Wu B H, Singh R P, Velu G. 2019. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Journal of Cereal Science, 88, 5764.

Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. 2015. KRN4 controls quantitative variation in maize kernel row number. Plos Genetics, 11, e1005670.

Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. 2022. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat. New Phytologist, 236, 114–131.

Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. 2020. Pan-genome of wild and cultivated soybeans. Cell, 182, 162–176.e13.

Lv R L, Gou X W, Li N, Zhang Z B, Wang C Y, Wang R S, Wang B, Yang C W, Gong L, Zhang H K, Liu B. 2023. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. The Plant Journal, 115, 15641582.

Ma X, Wang Q, Wang Y, Ma J, Wu N, Ni S, Luo T, Zhuang L, Chu C, Cho S W, Tsujimoto H, Qi Z. 2016. Chromosome aberrations induced by zebularine in triticale. Genome, 59, 485–492.

Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. 2005. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics112, 41–50.

Mahmoud M, Gobet N, Cruz-Dávalos D I, Mounier N, Dessimoz C, Sedlazeck F J. 2019. Structural variant calling: The long and the short of it. Genome Biology, 20, 246.

Mahmoud M, Gracz-Bernaciak J, Żywicki M, Karłowski W, Twardowski T, Tyczewska A. 2020. Identification of structural variants in two novel genomes of maize inbred lines possibly related to glyphosate tolerance. Plants, 9, 523.

Mao H D, Li S M, Chen B, Jian C, Mei F M, Zhang Y F, Li F F, Chen N, Li T, Du L Y, Ding L, Wang Z X, Cheng X X, Wang X J, Kang Z S. 2022. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 15, 276–292.

McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, 35, 89–99.

Metz C W, Bridges C B. 1917. Incompatibility of mutant races in drosophila. Proceedings of the National Academy of Sciences of the United States of America, 3, 673678.

Molitor C, Kurowski T J, Fidalgo de Almeida P M, Eerolla P, Spindlow D J, Kashyap S P, Singh B, Prasanna H C, Thompson A J, Mohareb F R. 2021. De novo genome assembly of Solanum sitiens reveals structural variation associated with drought and salinity tolerance. Bioinformatics, 37, 1941–1945.

Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K K, Visendi P, Lai K T, Doležel, J, Batley J, Edwards D. 2017. The pangenome of hexaploid bread wheat. The Plant Journal, 90, 1007–1013.

Muqaddasi Q H, Brassac J, Koppolu R, Plieske J, Ganal M W, Röder M S. 2019. TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Scientific Reports, 9, 13853.

Niebuhr E. 1978. Cytologic observations in 35 individuals with a 5p- karyotype. Human Genetic, 42,143–156.

Osipova S, Permyakov A, Permyakova M, Rudikovskaya E, Pomortsev A, Verkhoturov V, Pshenichnikova T. 2020. Drought tolerance evaluation of bread wheat (Triticum aestivum L.) lines with the substitution of the second homoeological group chromosomes. Cereal Research Communications, 48, 267–273.

Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 184, 3542–3558.e3516.

Quigley D A, Dang H X, Zhao S G, Lloyd P, Aggarwal R, Alumkal J J, Foye A, Kothari V, Perry M D, Bailey A M, Playdle D, Barnard T J, Zhang L, Zhang J, Youngren J F, Cieslik M P, Parolia A, Beer T M, Thomas G, Chi K N, et al. 2018. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell, 174, 758–769.e9.

Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 116, 5182–5187.

Schiessl S V, Katche E, Ihien E, Chawla H S, Mason A S. 2019. The role of genomic structural variation in the genetic improvement of polyploid crops. The Crop Journal, 7, 127–140.

Shi W P, Hao C Y, Zhang Y, Cheng J Y, Zhang Z, Liu J, Yi X, Cheng X M, Sun D Z, Xu Y H, Zhang X Y, Cheng S H, Guo P Y, Guo J. 2017. A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1412.

Shokat S, Sehgal D, Vikram P, Liu F L, Singh S. 2020. Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. International Journal of Molecular Sciences, 21, 3156.

Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, Hřibová E. 2020. Chromosome painting in cultivated bananas and their wild relatives (musa spp.) reveals differences in chromosome structure. International Journal of Molecular Sciences, 21, 7915.

Song L, Liu J, Cao B L, Liu B, Zhang X P, Chen Z Y, Dong C Q, Liu X Q, Zhang Z H, Wang W X, Chai L L, Liu J, Zhu J, Cui S B, He F, Peng H R, Hu Z R, Su Z Q, Guo W L, Xin M M, et al. 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature617, 118–124.

Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 122, 211–223.

Sutton T, Baumann U, Hayes J, Collins N C, Shi B J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P. 2007. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science, 318,1446–1449.

Thind A K, Wicker T, Müller T, Ackermann P M, Steuernagel B, Wulff B B H, Spannagl M, Twardziok S O, Felder M, Lux T, Mayer K F X, IWGSC(International Wheat Genome Sequencing Consortium), Keller B, Krattinger S G. 2018. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology, 19, 104.

Trickett A J, Butlin R K. 1994. Recombination suppressors and the evolution of new species. Heredity, 73, 339–345.

Villareal R L, del Toro E, Mujeeb-Kazi A, Rajaram S. 1995. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding, 114, 497–500.

Walkowiak S, Gao L L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri J N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature, 588, 277–283.

Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T. 2014. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proceedings of the National Academy of Sciences of the United States of America, 111, 533–538.

Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li JY , Qian Q. 2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47, 944–948.

Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, De Oliveira R, IWGSC (International Wheat Genome Sequencing Consortium), Mayer K F X, Paux E, Choulet F. 2018. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 19, 103.

Wu L, Li G, Li D, Dong C, Zhang X, Zhang L, Yang Z, Kong X, Xia C, Chen J, Liu X. 2024. Identification and functional analysis of a chromosome 2D fragment harboring TaFPF1 gene with the potential for yield improvement using a late heading wheat mutant. Theoretical and Applied Genetics, 137, 92.

Würschum T, Boeven P H G, Langer S M, Longin C F H, Leiser W L. 2015. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics16, 96.

Xia X T, Zhang F W, Li S, Luo X Y, Peng L X, Dong Z, Pausch H, Leonard A S, Crysnanto D, Wang S, Tong B, Lenstra J A, Han J L, Li F Y, Xu T S, Gu L H, Jin L L, Dang R H, Huang Y Z, Lan X Y, et al. 2023. Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment. Genome Biology, 24, 211.

Yang B, Chen N, Dang Y F, Wang Y Z, Wen H W, Zheng J, Zheng X W, Zhao J J, Lu J X, Qiao L. 2022. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. Frontiers in Plant Science, 13, 1019012.

Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, Han J, Liu Z Y, Cao T J. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 132, 1799–1814.

Yuan Y X, Bayer P E, Batley J, Edwards D. 2021. Current status of structural variation studies in plants. Plant Biotechnology Journal, 19, 2153–2163.

Zhang X, Chen X, Liang P, Tang H. 2018a. Cataloging plant genome structural variations. Current Issues in Molecular Biology, 27, 181–194.

Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 376, 180–183.

Zhang Y, Li D, Zhang D B, Zhao X G, Cao X M, Dong L L, Liu J X, Chen K L, Zhang H W, Gao C X, Wang D W. 2018b. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal, 94, 857–866.

Zhao J J, Li X H, Qiao L, Zheng X W, Wu B B, Guo M J, Feng M C, Qi Z J, Yang W D, Zheng J. 2023. Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.). Theoretical and Applied Genetics136, 37.

Zhao J J, Zheng X W, Qiao L, Yang C K, Wu B B, He Z M, Tang Y Q, Li G R, Yang Z J, Zheng J, Qi Z J. 2022. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). The Plant Journal, 112, 1447–1461.

Zhu X L, Rong W, Wang K, Guo W, Zhou M P, Wu J Z, Ye X G, Wei X N, Zhang Z Y. 2022. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal, 20,777–793.

Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. 2021.The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. Journal of Experimental Botany, 72, 6977–6989.

Zou Y, Wan L R, Luo J, Tang Z X, Fu S L. 2021. FISH landmarks reflecting meiotic recombination and structural alterations of chromosomes in wheat (Triticum aestivum L.). BMC Plant Biology21,167. 

No related articles found!
No Suggested Reading articles found!