Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants
Shuangxi Zhang1*, Xinlin Wei1*, Rongbo Wang2*, Hejing Shen1, Hehuan You1, Langjun Cui1, Yi Qiang1, Peiqing Liu2, Meixiang Zhang1#, Yuyan An1#

1College of Life Sciences, National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China/Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi’an 710119, China

2Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

Ahmed A S, Sánchez C P, Candela M E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology, 106, 817-824.

Asghar U, Malik M, Javed A. 2016. Pesticide exposure and human health: a review. Journal of Ecosystem & Ecography, S5, 005.

Bai B, Zhang G, Li Y, Wang Y, Sujata S, Zhang X, Wang L, Zhao L, Wu Y. 2022. The ‘Candidatus Phytoplasma tritici’ effector SWP12 degrades the transcription factor TaWRKY74 to suppress wheat resistance. The Plant Journal, 112, 1473-1488.

Blaker N, Hewitt J. 1987. A comparison of resistance to Phytophthora parasitica in tomato. Phytopathology, 77, 1113-1116.

Burketova L, Trda L, Ott P G, Valentova O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33, 994-1004.

Cantó C, Menzies K J, Auwerx J. 2015. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabolism, 22, 31-53.

Cao P, Chen J, Wang R, Zhao M, Zhang S, An Y, Liu P, Zhang M. 2022. A conserved type III effector RipB is recognized in tobacco and contributes to Ralstonia solanacearum virulence in susceptible host plants. Biochemical and Biophysical Research Communications, 631, 18-24.

Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee S Y, Stacey G. 2014. Identification of a plant receptor for extracellular ATP. Science, 343, 290-294.

Dean J, Goodwin P, Hsiang T. 2005. Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56 1525-1533.

Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X. 2013. Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Letters in Applied Microbiology, 57, 526-533.

Granke L, Quesada-Ocampo L, Lamour K, Hausbeck M K. 2012. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease, 96, 1588-1600.

Heese A, Hann D R, Gimenez-Ibanez S, Jones A M, He K, Li J, Schroeder J I, Peck S C, Rathjen J P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 104, 12217-12222.

Hong W, Mo F, Zhang Z, Huang M, Wei X. 2020. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Frontiers in Cell and Developmental Biology, 8, 246.

Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D L, Zavala E, Zhang Y, Moritoh K, O’Connell J F, Baptiste B A. 2018. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proceedings of the National Academy of Sciences of the United States of America, 115, E1876-E1885.

Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, Mou Z. 2023. N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nature Communications, 14, 6848.

Liang X, Zhou J-M. 2018. Receptor-like cytoplasmic kinases: central players in plant receptor kinase–mediated signaling. Annual Review of Plant Biology, 69, 267-99.

Liu Y, Tang Y, Qin X, Yang L, Jiang G, Li S, Ding W. 2017. Genome sequencing of Ralstonia solanacearum CQPS-1, a phylotype I strain collected from a highland area with continuous cropping of tobacco. Frontiers in Microbiology, 8, 974.

Meng Y, Zhang Q, Ding W, Shan W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology, 5, 43-51.

Mills K F, Yoshida S, Stein L R, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud M E, Apte R S, Uchida K. 2016. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 24, 795-806.

Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T. 2017. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Scientific Reports, 7, 6389.

Mou Z. 2017. Extracellular pyridine nucleotides as immune elicitors in Arabidopsis. Plant Signaling & Behavior, 12, e25474.

Nadeeshani H, Li J, Ying T, Zhang B, Lu J. 2022. Nicotinamide mononucleotide (NMN) as an anti-aging health product–promises and safety concerns. Journal of Advanced Research, 37, 267-278.

Okabe K, Yaku K, Tobe K, Nakagawa T. 2019. Implications of altered NAD metabolism in metabolic disorders. Journal of Biomedical Science, 26, 1-13.

Ouyang X, Chen J, Sun Z, Wang R, Wu X, Li B, Song C, Liu P, Zhang M. 2023. Ubiquitin E3 ligase activity of Ralstonia solanacearum effector RipAW is not essential for induction of plant defense in Nicotiana benthamiana. Frontiers in Microbiology, 14, 1201444.

Peeters N, Guidot A, Vailleau F, Valls M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology, 14, 651-662.

Pétriacq P, de Bont L, Tcherkez G, Gakière B. 2013. NAD: not just a pawn on the board of plant-pathogen interactions. Plant Signaling & Behavior, 8, e22477.

Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B. 2016. NAD acts as an integral regulator of multiple defense layers. Plant Physiology, 172, 1465-1479.

Qiang X, Liu X, Wang X, Zheng Q, Kang L, Gao X, Wei Y, Wu W, Zhao H, Shan W. 2021. Susceptibility factor RTP1 negatively regulates Phytophthora parasitica resistance via modulating UPR regulators bZIP60 and bZIP28. Plant Physiology, 186, 1269-1287.

Schultink A, Qi T, Lee A, Steinbrenner AD, Staskawicz B. 2017. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. The Plant Journal, 92, 787-795.

Sidiq Y, Nakano M, Mori Y, Yaeno T, Kimura M, Nishiuchi T. 2021. Nicotinamide effectively suppresses fusarium head blight in wheat plants. International Journal of Molecular Sciences, 22, 2968.

Tang D, Wang G, Zhou J M. 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant Cell, 29, 618-637.

Trammell S A, Yu L, Redpath P, Migaud M E, Brenner C. 2016. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. The Journal of Nutrition, 146, 957-963.

Wang C, Zhou M, Zhang X, Yao J, Zhang Y, Mou Z. 2017. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. Elife, 6, e25474.

Wang C, Huang X, Li Q, Zhang Y, Li J L, Mou Z. 2019. Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 10, 4810.

Wen Q, Sun M, Kong X, Yang Y, Zhang Q, Huang G, Lu W, Li W, Meng Y, Shan W. 2021. The novel peptide NbPPI1 identified from Nicotiana benthamiana triggers immune responses and enhances resistance against Phytophthora pathogens. Journal of Integrative Plant Biology, 63, 961-976.

Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. 2014. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 9, e98972.

Yang B, Yang S, Zheng W, Wang Y. 2022. Plant immunity inducers: From discovery to agricultural application. Stress Biology, 2, 5.

Yoshino J, Mills K F, Yoon M J, Imai S I. 2011. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metabolism, 14, 528-536.

Zhou J-M, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell, 181, 978-989.

Zhu F, Cao M Y, Zhang Q-P, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu Z Q. 2024. Join the green team: inducers of plant immunity in the plant disease sustainable control toolbox. Journal of Advanced Research, 57, 15-42.

Zhu F, Xi D H, Yuan S, Xu F, Zhang D W, Lin H H. 2014. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 27, 567-77.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  烟酰胺单核苷酸(Nicotinamide mononucleotide, NMN)是烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, NAD)生物合成的前体,在人类医学和医药保健领域具有重要作用,已被广泛应用。最近的研究表明,NMN有可能能够作为一种植物免疫诱导剂来防控植物真菌病害。然而,NMN是否能够赋予植物对多种植物病原菌的广谱抗性,以及其诱导植物免疫的潜在机制尚不清楚。在本文中,我们研究了外源施加NMN在烟草对多种植物病原菌的响应中的作用。结果表明,经NMN预处理的烟草对青枯劳尔氏菌(Ralstonia solanacearum) CQPS-1、丁香假单胞菌(Pseudomonas syringae) DC3000 ∆hopQ1-1、寄生疫霉(Phytophthora parasitica)和烟草花叶病毒(TMV)的抗性均显著增强。NMN在50 μM ~ 600 μM的浓度范围内具有较好的效果,其中75 μM的NMN效果最明显。NMN预处理提高植物抗病性的作用可持续长达10天。除烟草外,NMN预处理还增强了番茄和辣椒两种作物对多种植物病原菌的抗性,这些结果表明NMN具有赋予作物广谱抗病性的能力。此外,RT-qPCR分析显示,NMN显著上调了模式触发免疫(PTI)标记基因NbCYP71D20和水杨酸(SA)标记基因NbPR1a的表达。这表明NMN通过诱导PTI和SA介导的免疫来增强植物抗性。NMN在NMN腺苷基转移酶(NMNAT)的催化下合成NAD,NAD也具有提高植物抗病性的作用,且该作用依赖于其受体LecRK-I.8。有趣的是,我们发现NMN诱导植物抗病性的作用在NMNAT沉默的植物和NAD受体突变体lecrk- I.8中均没有显著降低,表明NMN诱导的植物免疫存在不依赖于NAD的信号通路。综上所述,我们的研究表明,生物活性核苷酸NMN具有赋予植物广谱抗病性的作用。研究结果为保护作物免受多种植物病原菌的侵染提供了一种简单、环保、有前景的策略。本文对NMN诱导植物免疫的机制的探索性研究也为未来进一步深入研究NMN的功能机制提供了重要线索。

Abstract  Nicotinamide mononucleotide (NMN), a precursor in nicotinamide adenine dinucleotide (NAD) biosynthesis, has long been recognized for its pivotal role in medicine. Recent investigations have suggested its potential as a plant immunity inducer for controlling fungal diseases. However, whether NMN confers plant broad-spectrum resistance against diverse phytopathogens, and its underlying mechanisms remain ambiguous. In this study, we investigate the effect of NMN against multiple phytopathogens in tobacco. Our results demonstrate that tobacco pretreated with NMN exhibits enhanced resistance against Rastonia solanacearum CQPS-1, Pseudomonas syringae DC3000 ∆hopQ1-1, Phytophthora parasitica, and tobacco mosaic virus (TMV). NMN displays effectiveness within the concentration range of 50-600 μM, with 75 μM NMN exhibiting the most pronounced effect. The impact of NMN pretreatment could persist for up to 10 days. Beyond tobacco, NMN pretreatment enhances disease resistance in tomato and pepper plants against diverse pathogens, underscoring NMN’s capacity to confer broad-spectrum disease resistance in crops. Moreover, RT-qPCR analysis reveals that NMN significantly upregulates the expression of the pattern-triggered immunity (PTI) marker gene NbCYP71D20 and salicylic acid (SA) marker gene NbPR1a. This suggests that NMN enhances plant resistance by inducing both PTI and SA-mediated immunity. Interestingly, the positive impact of NMN on plant disease resistance is not significantly compromised in both NMN adenylyltransferase (NMNAT)-silenced plants and NAD receptor mutant lecrk-I.8, suggesting the existence of NAD-independent signaling pathways for NMN-induced plant immunity. In conclusion, our study establishes that the bioactive molecule NMN imparts broad-spectrum disease resistance in plants, offering a simple, environmental-friendly, and promising strategy for safeguarding crops against diverse phytopathogens. These findings also provide valuable insights for future in-depth studies into the functional mechanisms of NMN. 
Keywords:  nicotinamide mononucleotide              immunity induction              broad-spectrum resistance              crops              NMNAT              LecRK-I.8  
Online: 23 May 2024  
Fund: We thank prof. Yan Liang in Zhejiang University for providing lecrk-I.8 seeds. This work was supported by the Technology Innovation Leading Program of Shaanxi (2023QYPY2-01), the National Natural Science Foundation of China (32072399, 32302296, 32372483), the Fundamental Research Funds for the Central Universities (GK202201017, GK202207024), and the Program of Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests (MIMCP-202203).
About author:  Shuangxi Zhang, E-mail: sxzhang2022@snnu.edu.cn; Xinlin Wei, E-mail: xinlinwei@snnu.edu.cn; Rongbo Wang, E-mail: wrb16128@163.com; #Correspondence Meixiang Zhang, E-mail: meixiangzhang@snnu.edu.cn; Yuyan An, E-mail:anyuyan@snnu.edu.cn *These authors contributed equally to this work.

Cite this article: 

Shuangxi Zhang, Xinlin Wei, Rongbo Wang, Hejing Shen, Hehuan You, Langjun Cui, Yi Qiang, Peiqing Liu, Meixiang Zhang, Yuyan An. 2024. Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.04.027

No related articles found!
No Suggested Reading articles found!