Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
An InDel in the Promoter of Ribosomal Protein S27-like Gene Regulates Skeletal Muscle Growth in Pigs
Xiaoqin Liu1,2,3,4, Xinhao Fan1,3,4, Junyu Yan1,3,4, Longchao Zhang5, Lixian Wang5, Honor Calnan2, Yalan Yang1,3,4, Graham Gardner2#, Rong Zhou5#, Zhonglin Tang1,3,4#

1 Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China

2 College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150 Australia

3 Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

4 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

5 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  产肉性状的遗传改良一直是猪育种的主要目标。地理隔离、自然和人工选择导致中国本地猪和西方商品猪在产肉性状上存在显著差异。比较基因组和转录组为挖掘与骨骼肌生长发育相关遗传变异和基因提供了强有力工具。然而,目前可利用的遗传变异和基因的数量仍然非常有限。在本研究中,利用中外猪种的比较转录组数据发现,核糖体蛋白S27样(RPS27L)基因在猪的骨骼肌中高表达,且在中国本地猪骨骼肌中的表达水平显著高于西方商品猪。细胞功能实验结果表明,过表达RPS27L促进了猪骨骼成肌细胞的增殖并抑制其分化。相反,RPS27L的敲低则抑制了该肌细胞的增殖并促进了分化。有趣的是,在RPS27L启动子区域发现了一个13bp的插入缺失(InDel)变异,该变异序列在中国本地猪品种中呈现插入型,在西方商品猪中则主要呈现缺失型。双荧光素酶报告实验进一步表明,该InDel通过影响转录因子3(TCF3)和肌源性分化抗原(MYOD)与启动子的结合调控RPS27L的表达水平。此外,关联分析显示RPS27L的表达水平与猪背膘厚呈正相关。同时,该InDel还与猪240日龄时体重呈显著负相关。综上,本研究表明RPS27L是调节猪骨骼肌生长发育的潜在基因,并可能作为猪产肉性状改良的候选标记。本研究不仅为动物育种提供了新的分子标记,还有助于了解人类骨骼肌的发育以及相关疾病的发生。

Abstract  

Genetic improvement of meat production traits has always been the primary goal of pig breeding. Geographical isolation, natural and artificial selection led to significant differences in the phenotypes of meat production traits between Chinese local pigs and Western commercial pigs. Comparative genomics and transcriptomics analysis provided powerful tools to identify genetic variants and genes associated with skeletal muscle growth. However, the number of available genetic variants and genes are still limited. In this study, a comprehensive comparison of transcriptomes showed that ribosomal protein S27-like (RPS27L) gene was highly expressed in skeletal muscle and up-regulated in Chinese local pigs when compared with Western commercial pigs. Functional analysis revealed that overexpression of RPS27L promoted myoblast proliferation and repressed differentiation in pig skeletal muscle cells. Conversely, the knockdown of RPS27L led to the inhibition of myoblast proliferation and the promotion of differentiation. Notably, a 13-bp insertion-deletion (InDel) mutation was identified within the RPS27L promoter, inserted in Chinese local breeds and predominantly deleted in Western commercial breeds. Luciferase reporter assay suggested this InDel modulated RPS27L expression by influencing transcription factor 3 (TCF3) and myogenic differentiation antigen (MYOD) binding to promoter. Furthermore, a positive correlation was observed between the expression of RPS27L expression and backfat thickness. Association studies demonstrated this InDel was significantly associated with the body weight of pigs at the age of 240 days. Together, our results suggested that RPS27L was a regulator of skeletal muscle development and growth, and was a candidate marker for improving meat production traits in pigs. This study not only provided a biomarker for animal breeding, but also was helpful for understanding skeletal muscle development and muscle-related disease in humans.

Keywords:  pig       InDel              RPS27L              skeletal muscle              growth and development  
Online: 28 May 2024  
Fund: This work was supported by the Sustainable development special project from Shenzhen (KCXFZ20201221173213037), the National Natural Science Foundation of China (32172697 and U23A20229), the Guangdong Provincial Natural Science Foundation (2021A1515011336) and Agricultural Science and Technology Innovation Program (CAAS-ZDRW202406).
About author:  #Correspondence Zhonglin Tang, E-mail: tangzhonglin@caas.cn; Rong Zhou, E-mail: zhourong03@caas.cn; Graham Gardner, E-mail: g.gardner@murdoch.edu.au

Cite this article: 

Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. 2024. An InDel in the Promoter of Ribosomal Protein S27-like Gene Regulates Skeletal Muscle Growth in Pigs. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.05.005

Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47, 217-225.

Berger MJ, Wenger AM, Guturu H, Bejerano G. 2018. Independent erosion of conserved transcription factor binding sites points to shared hindlimb, vision and external testes loss in different mammals. Nucleic Acids Research, 46, 9299-9308.

Cho I-C, Park H-B, Ahn JS, Han S-H, Lee J-B, Lim H-T, Yoo C-K, Jung E-J, Kim D-H, Sun W-S. 2019. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genetics, 15, e1008279.

Fang X, Mou Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W. 2012. The sequence and analysis of a Chinese pig genome. Gigascience, 1, 1-11.

Feigin CY, Newton AH, Pask AJ. 2019. Widespread cis-regulatory convergence between the extinct Tasmanian tiger and gray wolf. Genome Research, 29, 1648-1658.

Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens H-J, Li S, Larkin DM, Kim H, Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi S-H, Chow W, Clark RC, Clee C, Crooijmans RPMA, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du Z-Q, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JGR, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu Z-L, Humphray SJ, Hunt T, Hornshøj H, Jeon J-T, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim J-H, Kim K-W, Kim T-H, Larson G, Lee K, Lee K-T, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, Mclaren S, Morozumi T, Murtaugh MP, Narayan J, Truong Nguyen D, Ni P, Oh S-J, Onteru S, Panitz F, Park E-W, Park H-S, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393-398.

Guo YM, Lee G, Archibald A, Haley CS. 2008. Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan× Large White populations. Animal Genetics, 39, 486-495.

Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam SM, Zhang Q. 2023. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning.

Kojima M, Nakajima I, Arakawa A, Mikawa S, Matsumoto T, Uenishi H, Nakamura Y, Taniguchi M. 2018. Differences in gene expression profiles for subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses. PLoS One, 13, e0204135.

Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA. 2016. Progressive loss of function in a limb enhancer during snake evolution. Cell, 167, 633-642. e611.

Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A. 2018. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature, 564, 430-433.

Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung CK, Che T, Jin L. 2017. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research, 27, 865-874.

Lingbeck JM, Trausch‐Azar JS, Ciechanover A, Schwartz AL. 2008. In vivo interactions of MyoD, Id1, and E2A proteins determined by acceptor photobleaching fluorescence resonance energy transfer. The FASEB Journal, 22, 1694-1701.

Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L. 2022. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. Genetics Selection Evolution, 54, 62.

Lluís F, Ballestar E, Suelves M, Esteller M, & Muñoz‐Cánoves P. 2005. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle‐specific gene transcription. The EMBO Journal, 24, 974-984.

Londhe P, Davie JK. 2011. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skeletal Muscle, 1, 1-18.

Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X. 2014. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics, 10, e1004710.

Naval-Sanchez M, Nguyen Q, Mcwilliam S, Porto-Neto LR, Tellam R, Vuocolo T, Reverter A, Perez-Enciso M, Brauning R, Clarke S. 2018. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nature Communications, 9, 859.

Prather RS. 2013. Pig genomics for biomedicine. Nature Biotechnology, 31, 122-123.

Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M, Rodrigues MT, Hiller M. 2018. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nature Communications, 9, 4737.

Rothammer S, Kremer PV, Bernau M, Fernandez-Figares I, Pfister-Schär J, Medugorac I, Scholz AM. 2014. Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs. Genetics Selection Evolution, 46, 1-11.

Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold H-H, Jaenisch R. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 75, 1351-1359.

Schiaffino S, Reggiani C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev, 76, 371-423.

Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM. 2004. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717-723.

Sun S, He H, Ma Y, Xu J, Chen G, Sun Y, Xiong X. 2020. Inactivation of ribosomal protein S27-like impairs DNA interstrand cross-link repair by destabilization of FANCD2 and FANCI. Cell Death Dis, 11, 852.

Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. 2007. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biology, 8, 1-18.

Van Laere A-S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425, 832-836.

Wang L, Zhang L, Yan H, Liu X, Li N, Liang J, Pu L, Zhang Y, Shi H, Zhao K. 2014. Genome-wide association studies identify the loci for 5 exterior traits in a Large White× Minzhu pig population. PLoS One, 9, e103766.

Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science, 251, 761-766.

Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 13, 59-69.

Xie H-B, Wang L-G, Fan C-Y, Zhang L-C, Adeola AC, Yin X, Zeng Z-B, Wang L-X, Zhang Y-P. 2021. Genetic Architecture Underlying Nascent Speciation—The Evolution of Eurasian Pigs under Domestication. Molecular Biology and Evolution, 38, 3556-3566.

Xiong X, Zhao Y, He H, Sun Y. 2011. Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene, 30, 1798-1811.

Xiong X, Zhao Y, Tang F, Wei D, Thomas D, Wang X, Liu Y, Zheng P, Sun Y. 2014. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. Elife, 3, e02236.

Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C. 2018. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell, 173, 989-1002. e1013.

Yang Y-l, Yan L, Liang R-y, Rong Z, Hong A, Mu Y-l, Yang S-l, Kui L, Tang Z-l. 2014. Dynamic expression of microRNA-127 during porcine prenatal and postnatal skeletal muscle development. Journal of Integrative Agriculture, 13, 1331-1339.

Yang Y, Sun W, Wang R, Lei C, Zhou R, Tang Z, Li K. 2015. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol, 16, 4.

Yang Y, Yan J, Fan X, Chen J, Wang Z, Liu X, Yi G, Liu Y, Niu Y, Zhang L. 2021. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genetics, 17, e1009910.

Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. 2019. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Res, 26, 261-272.

Yao Y, Wang Z, Chen Y, Liu L, Wang L, Yi G, Yang Y, Wang D, Li K, Tang Z. 2023. Single-cell analysis reveals the lncRNA-MEG3/miRNA-133a-3p/PRRT2 axis regulates skeletal muscle regeneration and myogenesis. Genes & Diseases, 10, 359.

Zeng M, Wang B, Liu L, Yang Y, Tang Z. 2024. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs. Journal of Integrative Agriculture, 23, 217-227.

Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, & Zhu S. 2019. Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease. Iscience, 19, 162-176.

Zhao P, Yu Y, Feng W, Du H, Yu J, Kang H, Zheng X, Wang Z, Liu GE, & Ernst CW. 2018. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigascience, 7, giy058.

Zhou R, Li ST, Yao WY, Xie CD, Chen Z, Zeng ZJ, Wang D, Xu K, Shen ZJ, & Mu Y. 2021. The Meishan pig genome reveals structural variation‐mediated gene expression and phenotypic divergence underlying Asian pig domestication. Molecular Ecology Resources, 21, 2077-2092.

No related articles found!
No Suggested Reading articles found!