Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 879-892    DOI: 10.1016/j.jia.2024.06.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus

Jinxiang Gao1, Bing Li2, Pei Qin3, Sihao Zhang1, Xiaoting Li1, Yebitao Yang1, Wenhao Shen1, Shan Tang1, Jijun Li1, Liang Guo1, 4, Jun Zou1, Jinxing Tu1#

1 National Key Laboratory of Crop Genetic Improvement/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China

2 Crop Research Institute, Sichuan Academy of Agricultural Sciences/Sichuan Key Laboratory of Green Germplasm Innovation and Genetic Improvement of Grain and Oil Crops, Chengdu 610066, China

3 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China

4 Yazhouwan National Laboratory, Sanya 572025, China

 Highlights 
A dominant mutant INSIDE-ROLLING LEAF1 (IRL1) in rapeseed exhibits pleiotropic phenotypes including inward leaf rolling, drooping siliques, semi-dwarfism, and reduced branching.
IRL1 encodes BnaC02.LBD6, whose elevated expression due to a promoter SNP drives the mutant phenotypes, revealing a novel regulatory mechanism for leaf rolling.
The rare allele of BnaC02.LBD6 and its associated transcriptional networks provide valuable genetic resources for ideotype-based breeding in rapeseed.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

叶片性状是理想株型的重要组成部分。适当的卷叶有助于紧凑株型的建成。油菜是一种重要的油料作物,但油菜叶型发育的遗传学基础尚不清楚,也缺乏相应的种质资源用于油菜叶型的遗传改良。本研究鉴定到一个甘蓝型油菜叶片内卷的显性突变体,命名为INSIDE-ROLLING LEAF1 (IRL1)。该突变体由于叶肉细胞发育异常导致叶片内卷,此外还具有下垂角果和半矮杆表型,其有效分枝数减少了一到两个。图位克隆和遗传互补证实BnaC02G201100ZS是功能基因,BnaC02G201100ZS编码LATERAL ORGAN BOUNDARIES结构域蛋白6BnaC02.LBD6BnaC02.LBD6启动子区的SNP变异导致其表达量升高,BnaC02.LBD6过表达株系的表型与突变体irl1表型类似。单倍型分析显示BnaC02.LBD6启动区的罕见SNP变异造成了突变体irl1独特的表型。此外,RNA-seq分析表明与叶片近远轴极性发育,此生代谢过程和激素信号通路相关基因差异表达。本研究为进一步理解油菜叶型变异的遗传学基础提供了新的见解,同时为油菜株型改良提供了宝贵的种质资源。



Abstract  

Leaf morphology constitutes a key component of the ideotype, and optimal leaf rolling contributes to compact plant architecture.  Rapeseed (Brassica napus) is an important oilseed crop; however, the genetic mechanisms underlying leaf shape development remain poorly understood, and corresponding germplasm resources for genetic improvement are limited.  In this study, we identified a dominant mutant, INSIDE-ROLLING LEAF1 (IRL1), which exhibits inward leaf rolling due to defective mesophyll cell development.  The mutant also displays drooping siliques and a semi-dwarf phenotype, accompanied by a reduction of one to two effective branches.  Through map-based cloning and functional complementation assays, we confirmed BnaC02G0201100ZS as the causal gene IRL1.  This gene encodes LATERAL ORGAN BOUNDARIES DOMAIN6 (BnaC02.LBD6).  The phenotypic alterations in the IRL1 mutant result from elevated expression of BnaC02.LBD6, driven by a single nucleotide substitution within a DNA binding site in its promoter region.  Overexpression of BnaC02.LBD6 recapitulated the IRL1 mutant phenotype, confirming its functional role.  Haplotype analysis revealed a rare allelic variant in the BnaC02.LBD6 promoter associated with the unique leaf morphology of IRL1.  Transcriptomic profiling indicated significant differential expression of genes involved in adaxial–abaxial leaf polarity establishment, secondary metabolic pathways, and hormone signaling networks.  Our findings provide novel insights into the genetic regulation of leaf morphogenesis in rapeseed and offer valuable genetic resources for optimizing plant architecture in breeding programs.

Keywords:  Brassica napus       LATERAL ORGAN BOUNDARIES DOMAIN (LBD)        BnaC02.LBD6        leaf shape        map-based cloning        plant architecture  
Received: 18 February 2024   Accepted: 06 May 2024 Online: 27 June 2024  
Fund: This work was funded by the National Key Research and Development Program of China (2021YFF1000100) and the Fundamental Research Funds for the Central Universities, China (2662023PY004).
About author:  Jinxiang Gao, E-mail: gaojx@yaas.org.cn; #Correspondence Jinxing Tu, E-mail: tujx@mail.hzau.edu.cn

Cite this article: 

Jinxiang Gao, Bing Li, Pei Qin, Sihao Zhang, Xiaoting Li, Yebitao Yang, Wenhao Shen, Shan Tang, Jijun Li, Liang Guo, Jun Zou, Jinxing Tu. 2026. A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus. Journal of Integrative Agriculture, 25(3): 879-892.

Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. 2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in ArabidopsisThe Plant Cell16, 2463–2480.

Bowman J L. 2000. The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology3, 17–22.

Burian A, Paszkiewicz G, Nguyen K T, Meda S, Raczyńska-Szajgin M, Timmermans M C P. 2022. Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. Nature Plants8, 269–280.

Caggiano M P, Yu X, Bhatia N, Larsson A, Ram H, Ohno C K, Sappl P, Meyerowitz E M, Jönsson H, Heisler M G. 2017. Cell type boundaries organize plant development. Elife12, e27421.

Canales C, Grigg S, Tsiantis M. 2005. The formation and patterning of leaves: Recent advances. Planta221, 752–756.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890.

Chen X, Wang H, Li J, Huang H, Xu L. 2013. Quantitative control of ASYMMETRIC LEAVES2 expression is critical for leaf axial patterning in ArabidopsisJournal of Experimental Botany64, 4895–4905.

Chitwood D H, Guo M, Nogueira F T, Timmermans M C. 2007. Establishing leaf polarity: The role of small RNAs and positional signals in the shoot apex. Development134, 813–823.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant Journal16, 735–743.

Dkhar J, Pareek A. 2014. What determines a leaf’s shape? Evodevo5, 47.

Dong J, Huang H. 2018. Auxin polar transport flanking incipient primordium initiates leaf adaxial–abaxial polarity patterning. Journal of Integrative Plant Biology60, 455–464.

Douglas S J, Chuck G, Dengler R E, Pelecanda L, Riggs C D. 2002. KNAT1 and ERECTA regulate inflorescence architecture in ArabidopsisThe Plant Cell14, 547–558.

Du F, Guan C, Jiao Y. 2018. Molecular mechanisms of leaf morphogenesis. Molecular Plant11, 1117–1134.

Dun X, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. 2011. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napusThe Plant Journal68, 532–545.

Emery J F, Floyd S K, Alvarez J, Eshed Y, Hawker N P, Izhaki A, Baum S F, Bowman J L. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology13, 1768–1774.

Eshed Y, Baum S F, Perea J V, Bowman J L. 2001. Establishment of polarity in lateral organs of plants. Current Biology11, 1251–1260.

Eshed Y, Izhaki A, Baum S F, Floyd S K, Bowman J L. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development131, 2997–3006.

Fan S, Zhang L, Tang M, Cai Y, Liu J, Liu H, Liu J, Terzaghi W, Wang H, Hua W, Zheng M. 2021. CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnology Journal19, 2383–2385.

Fang J, Guo T, Xie Z, Chun Y, Zhao J, Peng L, Zafar S A, Yuan S, Xiao L, Li X. 2021. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiology185, 1722–1744.

Garcia D, Collier S A, Byrne M E, Martienssen R A. 2006. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Current Biology16, 933–938.

Govaerts Y M, Jacquemoud S, Verstraete M M, Ustin S L. 1996. Three-dimensional radiation transfer modeling in a dicotyledon leaf. Applied Optics35, 6585–6598.

Guan C, Wu B, Yu T, Wang Q, Krogan N T, Liu X, Jiao Y. 2017. Spatial auxin signalling controls leaf flattening in ArabidopsisCurrent Biology27, 2940–2950.

Guenot B, Bayer E, Kierzkowski D, Smith R S, Mandel T, Žádníková P, Benková E, Kuhlemeier C. 2012. Pin1-independent leaf initiation in ArabidopsisPlant Physiology59, 1501–1510.

Guo M, Thomas J, Collins G, Timmermans M C. 2008. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of ArabidopsisThe Plant Cell20, 48–58.

Howe E S, Clemente T E, Bass H W. 2012. Maize histone H2B-mCherry: A new fluorescent chromatin marker for somatic and meiotic chromosome research. DNA and Cell Biology31, 925–938.

Hu Y, Li S, Xing Y. 2019. Lessons from natural variations: Artificially induced heading date variations for improvement of regional adaptation in rice. Theoretical and Applied Genetics132, 383–394.

Husbands A Y, Benkovics A H, Nogueira F T, Lodha M, Timmermans M C. 2015. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial–abaxial patterning and leaf complexity. The Plant Cell27, 3321–3335.

Itoh J, Hibara K, Sato Y, Nagato Y. 2008. Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice. Plant Physiology147, 1960–1975.

Izhaki A, Bowman J L. 2007. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in ArabidopsisThe Plant Cell19, 495–508.

Je B I, Gruel J, Lee Y K, Bommert P, Arevalo E D, Eveland A L, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D. 2016. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics48, 785–791.

Jia Y, Yu P, Shao W, An G, Chen J, Yu C, Kuang H. 2022. Up-regulation of LsKN1 promotes cytokinin and suppresses gibberellin biosynthesis to generate wavy leaves in lettuce. Journal of Experimental Botany73, 6615–6629.

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics42, 541–544.

Kelley D R, Arreola A, Gallagher T L, Gasser C S. 2012. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in ArabidopsisDevelopment139, 1105–1109.

Kerstetter R A, Bollman K, Taylor R A, Bomblies K, Poethig R S. 2001. KANADI regulates organ polarity in ArabidopsisNature411, 706–709.

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907–915.

Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. 2022. Response of leaf carbon metabolism and dry matter accumulation to density and row spacing in two rapeseed (Brassica napus L.) genotypes with differing plant architectures. The Crop Journal10, 680–691.

Li B, Liu X, Guo Y, Deng L, Qu L, Yan M, Li M, Wang T. 2023. BnaC01.BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napusTheoretical and Applied Genetics136, 29.

Li C X, Song Y F, Zhu Y, Cao M N, Han X, Fan J S, Lv Z C, Xu Y, Zhou Y, Zeng X, Zhang L, Dong L, Sun D Q, Wang Z H, Di H. 2025. GWAS analysis reveals candidate genes associated with dense tolerance (ear leaf structure) in maize (Zea mays L.). Journal of Integrative Agriculture24, 2046–2062.

Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K. 2019. An auxin signalling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytologist222, 837–851.

Li Y, Pi L, Huang H, Xu L. 2012. ATH1 and KNAT2 proteins act together in regulation of plant inflorescence architecture. Journal of Experimental Botany63, 1423–1433.

Li Z, Li B, Shen W H, Huang H, Dong A. 2012. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thalianaThe Plant Journal71, 99–107.

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930.

Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. 2015. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in ArabidopsisWiley Interdisciplinary Reviews (Developmental Biology), 4, 655–671.

Manuela D, Xu M. 2020. Patterning a leaf by establishing polarities. Frontiers in Plant Science11, 568730.

McConnell J R, Barton M K. 1998. Leaf polarity and meristem formation in ArabidopsisDevelopment125, 2935–2942.

McConnell J R, Emery J, Eshed Y, Bao N, Bowman J, Barton M K. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature411, 709–713.

Merelo P, Paredes E B, Heisler M G, Wenkel S. 2017. The shady side of leaf development: The role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Current Opinion in Plant Biology35, 111–116.

Merelo P, Ram H, Pia Caggiano M, Ohno C, Ott F, Straub D, Graeff M, Cho S K, Yang S W, Wenkel S, Heisler M G. 2016. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proceedings of the National Academy of Sciences of the United States of Ameirica113, 11973–11978.

Moon J, Hake S. 2011. How a leaf gets its shape. Current Opinion in Plant Biology14, 24–30.

Muszynski M G, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria A R, Alvarez-Castro I, Petefish A, Sakakibara H, Krivosheev D M, Lomin S N, Romanov G A, Thamotharan S, Dam T, Li B, Brugière N. 2020. The maize Hairy Sheath Frayed1 (Hsf1) mutation alters leaf patterning through Increased cytokinin signaling. The Plant Cell32, 1501–1518.

Pan Z, Liu M, Zhao H, Tan Z, Liang K, Sun Q, Gong D, He H, Zhou W, Qiu F. 2020. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. Journal of Integrative Plant Biology62, 895–1909.

Park S J, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman Z B. 2014. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nature Genetics46, 1337–1342.

Pekker I, Alvarez J P, Eshed Y. 2005. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. The Plant Cell17, 2899–2910.

Prigge M J, Otsuga D, Alonso J M, Ecker J R, Drews G N, Clark S E. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell17, 61–76.

Qi J, Wang Y, Yu T, Cunha A, Wu B, Vernoux T, Meyerowitz E, Jiao Y. 2014. Auxin depletion from leaf primordia contributes to organ patterning. Proceedings of the National Academy of Sciences of the United States of Ameirica111, 18769–18774.

Romanova M A, Maksimova A I, Pawlowski K, Voitsekhovskaja O V. 2021. YABBY genes in the development and evolution of land plants. International Journal of Molecular Sciences22, 4139.

Rong F, Chen F, Huang L, Zhang J, Zhang C, Hou D, Cheng Z, Weng Y, Chen P, Li Y. 2019. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics132, 113–123.

Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology24, 105–109.

Sarojam R, Sappl P G, Goldshmidt A, Efroni I, Floyd S K, Eshed Y, Bowman J L. 2010. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. The Plant Cell22, 2113–2130.

Satterlee J W, Scanlon M J. 2019. Coordination of leaf development across developmental axes. Plants8, 433.

Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. 1999. Members of the YABBY gene family specify abaxial cell fate in ArabidopsisDevelopment126, 4117–4128.

Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology40, 1403–1411.

Stahle M I, Kuehlich J, Staron L, von Arnim A G, Golz J F. 2009. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in ArabidopsisThe Plant Cell21, 3105–3118.

Su Y H, Liu Y B, Zhang X S. 2011. Auxin-cytokinin interaction regulates meristem development. Molecular Plant4, 616–625.

Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, Sun X, Wu J, Ai P, Quick W P, Lu T, Zhang Z. 2020. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnology Journal18, 2559–2572.

Tang S, Liu D X, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang Q Y, Guo L. 2020. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napusThe Plant Journal104, 1410–1422.

Tang S, Zhao H, Lu S, Yu L, Zhang G, Zhang Y, Yang Q Y, Zhou Y, Wang X, Ma W, Xie W, Guo L. 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napusMolecular Plant14, 470–487.

Tatematsu K, Toyokura K, Miyashima S, Nakajima K, Okada K. 2015. A molecular mechanism that confines the activity pattern of miR165 in Arabidopsis leaf primordia. The Plant Journal82, 596–608.

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science365, 658–664.

Venglat S P, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R. 2022. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in ArabidopsisProceedings of the National Academy of Sciences of the United States of Ameirica99, 4730–4735.

Wang H, Kong F, Zhou C. 2021. From genes to networks: The genetic control of leaf development. Journal of Integrative Plant Biology63, 1181–1196.

Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L, Zhang Q, et al. 2023. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnology Journal21, 819–838.

Wang W, Xu B, Wang H, Li J, Huang H, Xu L. 2011. YUCCA genes are expressed in response to leaf adaxial–abaxial juxtaposition and are required for leaf margin development. Plant Physiology157, 1805–1819.

Wang X D, Cai Y, Pang C K, Zhao X Z, Shi R, Liu H F, Chen F, Zhang W, Fu S X, Hu M L, Hua W, Zheng M, Zhang J F. 2023. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napusJournal of Integrative Agriculture22, 2981–2992.

Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi I H, Jilani G, Wu L, et al. 2019. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Molecular Plant12, 30–43.

Wu G, Lin W C, Huang T, Poethig R S, Springer P S, Kerstetter R A. 2008. KANADI1 regulates adaxial–abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proceedings of the National Academy of Sciences of the United States of Ameirica105, 16392–16397.

Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu L J, Gu H. 2011. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and ArabidopsisThe Plant Cell23, 3392–3411.

Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H. 2003. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development130, 4097–4107.

Xu P, Ali A, Han B, Wu X. 2018. Current advances in molecular basis and mechanisms regulating leaf morphology in rice. Frontiers in Plant Science23, 1528.

Yu X Q, Xie W, Liu H, Liu W, Zeng D L, Qian Q, Ren D Y. 2022. Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice. Journal of Integrative Agriculture21, 3103–3113.

Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J. 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications8, 14789.

Zhao M, Yang S, Chen C Y, Li C, Shan W, Lu W, Cui Y, Liu X, Wu K. 2015. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS Genetics11, 1005125.

Zheng M, Terzaghi W, Wang H, Hua W. 2022. Integrated strategies for increasing rapeseed yield. Trends In Plant Science27, 742–745.

Zhu Z, Wang J, Li C, Li L, Mao X, Hu G, Wang J, Chang J, Jing R. 2022. A transcription factor TaMYB5 modulates leaf rolling in wheat. Frontiers in Plant Science13, 897623.

[1] Ying Zhang, Rui Wang, Tianshun Luo, Jingyan Fu, Meng Yin, Maolin Wang, Yun Zhao. CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1704-1717.
[2] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[3] Qianwei Zhang, Yuanyi Mao, Zikun Zhao, Xin Hu, Ran Hu, Nengwen Yin, Xue Sun, Fujun Sun, Si Chen, Yuxiang Jiang, Liezhao Liu, Kun Lu, Jiana Li, Yu Pan.

A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1481-1493.

[4] Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu. Ovule number as a rising star for regulating seed yield: Hope or hype[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3623-3640.
[5] XUE Yu-fei, INKABANGA TSEKE Alain, YIN Neng-wen, JIANG Jia-yi, ZHAO Yan-ping, LU Kun, LI Jia-na, DING Yan-song, ZHANG Shi-qing, CHAI You-rong. Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica)[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3810-3815.
[6] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
No Suggested Reading articles found!