|
Aggarwal R A K, Kumar A, Thakur H L. 1997. Effect of Sclerotinia rot on oil quality in low erucic acid cultivars of rapeseed. Cruciferae Newsletter, 19, 103-104.
Amselem J, Cuomo C A, van-Kan J A L, Viaud M, Benito E P, Couloux A, Coutinho P M, de-Vries R P, Dyer P S, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer K M, Pradier J M, Quévillon E, Sharon A, Simon A, et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Plos Genetics, 7, e1002230.
Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322-1326.
Bolton M D, Thomma B P H J, Nelson B D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1-16.
Choquer M, Boccara M, Gonçalves I R, Soulié M C, Vidal-Cros A. 2004. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. European Journal of Biochemistry, 271, 2153-2164.
Dai C, Li Y Q, Li L, Du Z L, Lin S L, Tian X, Li S J, Yang B, Yao W, Wang J, Guo L, Lu S P. 2020. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding, 40, 96.
Ding Y J, Chai Y R, Li S, Wu Z H, Zou M H, Zhang L, Kusum R, Qian W. 2025. SsBMR1 as a putative ABC transporter is required for pathogenesis by promoting antioxidant exportand antifungal resistance in Sclerotinia sclerotiorum. Journal of Integrative Agriculture, 25, 166-179..
Ding Y J, Chen Y G, Yan B Q, Liao H M, Dong M Q, Meng X R, Wan H F, Qian W. 2021. Host-induced gene silencing of a multifunction gene Sscnd1 enhances plant resistance against Sclerotinia sclerotiorum. Frontiers in Microbiology, 12, 693334.
Gebremichael D E, Ciofini A, Sabbadini S, Mezzetti B, Baraldi E, Haile Z M, Negrini F. 2025. Exogenous dsRNAs against chitin synthase and glucan synthase genes suppress the virulence of the pathogenic fungus Botrytis cinerea. Journal of Plant Pathology, 107, 251-264.
Geoghegan I, Steinberg G, Gurr S. 2017. The role of the fungal cell wall in the infection of plants. Trends in Microbiology, 25, 957-967.
Han L L, Li Y L, Yuan Z H, Wang J, Tian B N, Fang A F, Yang Y H, Bi C W, Yu Y. 2025. RNA interference-mediated targeting of monooxygenase SsMNO1 for controlling Sclerotinia stem rot caused by Sclerotinia sclerotiorum. Pest Management Science, 81, 1457-1468.
Höfle L, Biedenkopf D, Werner B T, Shrestha A, Jelonek L, Koch A. 2020. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biology, 17, 463-473.
Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, Mcmillan J, Mentzel T, Kogel K H. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. Plos Pathogens, 12, e1005901.
Koch A, Höfle L, Werner B T, Imani J, Schmidt A, Jelonek L, Kogel K H. 2019. SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. Molecular Plant Pathology, 20, 1636-1644.
Koch A, Wassenegger M. 2021. Host-induced gene silencing-mechanisms and applications. New Phytologist, 231, 54-59.
Kweon Y J, Fang M, Shin S Y, Lee D, Kim K H, Shin C. 2022. Sequence optimization and multiple gene-targeting improve the inhibitory efficacy of exogenous double-stranded RNA against pepper mottle virus in Nicotiana benthamiana. Applied Biological Chemistry, 65, 87.
Li M, Rollins J A. 2010. The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genetics and Biology, 47, 531-538.
Lin L, Fan J L, Li P P, Liu D X, Ren S C, Lin K Y, Fang Y J, Lin C, Wang Y P, Wu J. 2022. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: Isolation, characterization, and application in host-induced gene silencing. Journal of Experimental Botany, 73, 6663-6677.
Lin L, Zhang X R, Fan J L, Li J W, Ren S C, Gu X, Li P P, Xu M L, Xu J, Lei W J, Liu D X, Sun Q F, Cai G Q, Yang QY, Wang Y P, Wu J. 2024. Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape. Nature Communications, 15, 5059.
Lu P, Guo L, Wang Z Z, Li B B, Li J, Li Y H, Qiu D, Shi W Q, Yang L J, Wang N, Guo G H, Xie J Z, Wu Q H, Chen Y X, Li M M, Zhang H Z, Dong L L, Zhang P P, Zhu K Y, Yu D Z, et al. 2020. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nature Communications, 11, 680.
Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307-1313.
McLoughlin A G, Wytinck N, Walker P L, Girard I J, Rashid K Y, de Kievit T, Fernando W G D, Whyard S, Belmonte M F. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8, 7320.
Mukherjee S, Beligala G, Feng C C, Marzano S Y. 2024. Double-stranded RNA targeting white mold Sclerotinia sclerotiorum argonaute 2 for disease control via spray-induced gene silencing. Phytopathology, 114, 1253-1262.
Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130-3141.
Pant P, Kaur J. 2023. Spray-induced gene silencing of SsOah1 and SsCyp51 confers protection to Nicotiana benthamiana and Brassica juncea against Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 127, 102109.
Pant P, Kaur J. 2024. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. Planta, 259, 153.
Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York, USA. p. 94.
Taylor A, Rana K, Handy C, Clarkson J P. 2018. Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen. Plant Pathology, 67, 433-444.
Tian L, Li J, Xu Y, Qiu Y L, Zhang Y L, Li X. 2024. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control. The Plant Journal, 118, 324-344.
USDARS (U.S. Department of Agriculture-Agricultural Research Service). 2022. 2022 national sclerotinia initiative annual meeting booklet. [2025-10-24]. https://www.ars.usda.gov/ARSUSERFILES/30600500/SCLEROTINIA/2022%20NSI%20ANNUAL%20MEETING/2022%20NSI%20ANNUAL%20MEETING%20BOOKLET%20-%20FINAL.PDF
Wang M, Jin H L. 2017. Spray-induced gene silencing: A powerful innovative strategy for crop Protection. Trends in Microbiology, 25, 4-6.
Wu J, Cai G Q, Tu J Y, Li L X, Liu S, Luo X P, Zhou L P, Fan C C, Zhou Y M. 2013. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE, 8, e67740.
Wu J, Yin S L, Lin L, Liu D X, Ren S C, Zhang W J, Meng W C, Chen P P, Sun Q F, Fang Y J, Wei C X, Wang Y P. 2022. Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napus. The Crop Journal, 10, 661-671.
Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G Q, Zhang C Y, Fan C C, Wang Y P, Zhou Y M. 2016. Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Frontiers in Plant Science, 7, 1418.
Wytinck N, Ziegler D J, Walker P L, Sullivan D S, Biggar K T, Khan D, Sakariyahu S K, Wilkins O, Whyard S, Belmonte M F. 2022. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus. PLoS ONE, 17, e0261102.
Xu Y, Tan J Y, Lu J X, Zhang Y L, Li X. 2024. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Biotechnology Journal, 22, 262-277.
Yang P, Yi S Y, Nian J N, Yuan Q S, He W J, Zhang J B, Liao Y C. 2021. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat. Frontiers in Microbiology, 12, 660976.
Zhang C, Xu Y, Li L, Wu M S, Fang Z Y, Tan J Y, Rollins J A, Lin H H, Huang X Y, Mansfield S D, Li X, Zhang Y L. 2025. A GDP-mannose-1-phosphate guanylyltransferase as a potential HIGS target against Sclerotinia sclerotiorum. Plos Pathogens, 21, e1013129.
Zhang F Q, Huang J Y, Tang M Q, Cheng X H, Liu Y Y, Tong C B, Yu J Y, Sadia T, Dong C H, Liu L Y, Tang B J, Chen J G, Liu S Y. 2019. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. Journal of Integrative Plant Biology, 61, 75-88.
Zhao C J, Zhang Y, Gao L X, Xie M L, Zhang X, Zeng L Y, Liu J, Liu Y Y, Zhang Y Y, Tong C B, Hu Q, Cheng X H, Liu L J, Liu S Y. 2023. Genome editing of RECEPTOR-LIKE KINASE 902 confers resistance to necrotrophic fungal pathogens in Brassica napus without growth penalties. Plant Biotechnology Journal, 22, 538-540.
Zhao J H, Liu Q Y, Xie Z M, Guo H S. 2024. Exploring the challenges of RNAi-based strategies for crop protection. Advanced Biotechnology, 2, 23.
|