Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Simultaneous silencing of ten essential Sclerotinia sclerotiorum genes via spray- and host-induced gene silencing enhances against Sclerotinia stem rot resistance in oilseed rape

Sichao Ren1*, Ying Zhang2*, Yi Ye1, Wenjing Huang1, Wenxin Liu1, Shengliang Yin1, Yang Yang1, Yu Liu1, Jialin Fan1, Yumei Wang1, Youping Wang1,3, Li Lin1#, Jian Wu1#

1 Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

2 Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225007, China

3 Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China

 Highlights 

A 1,250-bp chimeric dsRNA simultaneously targeting ten Sclerotinia sclerotiorum genes effectively suppresses fungal development and pathogenicity.

Both spray-induced (SIGS) and host-induced (HIGS) gene silencing confer enhanced resistance to Sclerotinia stem rot in oilseed rape.

HIGS transgenic lines show stable, heritable resistance across multiple generations without compromising yield performance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由坏死营养型真菌核盘菌(Sclerotinia sclerotiorum)引起菌核病(Sclerotinia stem rot),是油菜(Brassica napus)在生产中最具危害性的病害之一现有的油菜品种及其近缘种中缺乏有效抗源,迄今尚未发现能够赋予完全抗性的基因。为提油菜对菌核病的抗性,本研究采用多靶标RNA干扰(RNAi)策略,设计并构建了一段可同时靶向核盘菌10个关键基因的嵌合双链RNAdsRNA),其中包括8个与核盘菌生长发育相关的基因(SsChsIVIISsGas1)和2个与核盘菌致病性相关的基因(SsPG1SsOAH1)。随后,分别通过喷施诱导基因沉默(spray-induced gene silencing, SIGS)和宿主诱导基因沉默(host-induced gene silencing, HIGS)两种技术对其防控效果进行分析。该嵌合dsRNA全长1,250 bp,由10个分别对应不同靶基因的125 bp片段串联组成体外实验结果显示,该嵌合dsRNA处理可使核盘菌中9个靶基因的表达量下调50%以上,说明核盘菌能够有效摄取并加工长链dsRNASIGS处理后,烟草和油菜植株的病斑面积及真菌生物量均显著降低。HIGS转基因油菜能够稳定产生针对靶基因的特异性小干扰RNAsiRNA),显著抑制核盘菌靶基因的表达,进而降低草酸积累聚半乳糖醛酸酶活性,并抑制菌丝生长。HIGS转基因油菜对菌核病的抗性显著提高,且抗性在T2T5稳定遗传。T5代中,叶片病斑面积和茎秆病斑长度分别较对照减少38.9%–59.1%43.2%–65.8%综上HIGS在不影响产量和品质的情况下赋予植株稳定可遗传的抗性,而SIGS则提供了一种快速、非转基因的防控途径。本研究验证了长链嵌合dsRNA在多基因同时沉默中的有效性,为提升油菜对菌核病的抗性提供了新的防控策略



Abstract  

Sclerotinia stem rot (SSR) is caused by the necrotrophic fungus Sclerotinia sclerotiorum and threatens global oilseed rape (Brassica napus) production. Moreover, researchers have not yet identified a gene that confers complete resistance. Here, we developed a multi-target RNA interference (RNAi) strategy to enhance plant resistance by simultaneously silencing eight fungal genes involved in development (SsChsI–VII, SsGas1) and two involved in pathogenicity (SsPG1, SsOAH1) of S. sclerotiorum. Accordingly, we designed a 1,250-bp chimeric double-stranded RNA (dsRNA) consisting of ten 125-bp fragments each targeting a different gene, and evaluated its effectiveness using spray-induced gene silencing (SIGS) and host-induced gene silencing (HIGS) via stable transformation. In vitro application of the chimeric dsRNA resulted in >50% downregulation of nine target genes, indicating efficient uptake and processing by S. sclerotiorum. Both lesion area and fungal biomass were significantly lower in Nicotiana benthamiana and oilseed rape plants following SIGS. Moreover, stable transgenic plants for HIGS effectively generated gene-specific short interfering RNAs and exhibited an increase in resistance from the T2 to T5 generations, with lesions that were 38.9–59.1% smaller in leaves and 43.2–65.8% smaller in stems in the T5 generation compared with the control plants. Gene silencing resulted in lower oxalic acid accumulation, decreased polygalacturonase activity, and impaired hyphal development, suggesting interference with multiple fungal infection pathways. Notably, HIGS conferred stable, heritable resistance without yield penalty, whereas SIGS provided rapid, nontransgenic protection. This study demonstrates the effectiveness of long chimeric dsRNAs for multi-target gene silencing and highlights a promising RNAi-based strategy for improving disease resistance in oilseed rape, possibly in combination with natural quantitative resistance loci.

Keywords:  Sclerotinia sclerotiorum              Brassica napus              host-induced gene silencing              spray-induced gene silencing       chimeric dsRNA              multi-target gene silencing  
Online: 05 February 2026  
Fund: 

This study was supported by the National Natural Science Foundation of China (32072020 and 32272112 to J.W.), the Natural Science Foundation of Jiangsu Province, China (BK20240046 to J.W., BE2022340 to Y.W.), the Graduate Research & Practice Innovation Program of Jiangsu Province, China (Yangzhou University, SJCX21_1599 to S.R.), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

About author:  #Correspondence Jian Wu, Tel: +86-514-87979343, E-mail: wu_jian@yzu.edu.cn; Li Lin, Tel: +86-514-87997303, E-mail: ll@yzu.edu.cn *These authors contributed equally to this work.

Cite this article: 

Sichao Ren, Ying Zhang, Yi Ye, Wenjing Huang, Wenxin Liu, Shengliang Yin, Yang Yang, Yu Liu, Jialin Fan, Yumei Wang, Youping Wang, Li Lin, Jian Wu. 2026. Simultaneous silencing of ten essential Sclerotinia sclerotiorum genes via spray- and host-induced gene silencing enhances against Sclerotinia stem rot resistance in oilseed rape. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.007

Aggarwal R A K, Kumar A, Thakur H L. 1997. Effect of Sclerotinia rot on oil quality in low erucic acid cultivars of rapeseed. Cruciferae Newsletter, 19, 103-104.

Amselem J, Cuomo C A, van-Kan J A L, Viaud M, Benito E P, Couloux A, Coutinho P M, de-Vries R P, Dyer P S, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer K M, Pradier J M, Quévillon E, Sharon A, Simon A, et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Plos Genetics, 7, e1002230.

Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322-1326.

Bolton M D, Thomma B P H J, Nelson B D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1-16.

Choquer M, Boccara M, Gonçalves I R, Soulié M C, Vidal-Cros A. 2004. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. European Journal of Biochemistry, 271, 2153-2164.

Dai C, Li Y Q, Li L, Du Z L, Lin S L, Tian X, Li S J, Yang B, Yao W, Wang J, Guo L, Lu S P. 2020. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding, 40, 96.

Ding Y J, Chai Y R, Li S, Wu Z H, Zou M H, Zhang L, Kusum R, Qian W. 2025. SsBMR1 as a putative ABC transporter is required for pathogenesis by promoting antioxidant exportand antifungal resistance in Sclerotinia sclerotiorum. Journal of Integrative Agriculture, 25, 166-179..

Ding Y J, Chen Y G, Yan B Q, Liao H M, Dong M Q, Meng X R, Wan H F, Qian W. 2021. Host-induced gene silencing of a multifunction gene Sscnd1 enhances plant resistance against Sclerotinia sclerotiorum. Frontiers in Microbiology, 12, 693334.

Gebremichael D E, Ciofini A, Sabbadini S, Mezzetti B, Baraldi E, Haile Z M, Negrini F. 2025. Exogenous dsRNAs against chitin synthase and glucan synthase genes suppress the virulence of the pathogenic fungus Botrytis cinerea. Journal of Plant Pathology, 107, 251-264.

Geoghegan I, Steinberg G, Gurr S. 2017. The role of the fungal cell wall in the infection of plants. Trends in Microbiology, 25, 957-967.

Han L L, Li Y L, Yuan Z H, Wang J, Tian B N, Fang A F, Yang Y H, Bi C W, Yu Y. 2025. RNA interference-mediated targeting of monooxygenase SsMNO1 for controlling Sclerotinia stem rot caused by Sclerotinia sclerotiorum. Pest Management Science, 81, 1457-1468.

Höfle L, Biedenkopf D, Werner B T, Shrestha A, Jelonek L, Koch A. 2020. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biology, 17, 463-473.

Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, Mcmillan J, Mentzel T, Kogel K H. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. Plos Pathogens, 12, e1005901.

Koch A, Höfle L, Werner B T, Imani J, Schmidt A, Jelonek L, Kogel K H. 2019. SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. Molecular Plant Pathology, 20, 1636-1644.

Koch A, Wassenegger M. 2021. Host-induced gene silencing-mechanisms and applications. New Phytologist, 231, 54-59.

Kweon Y J, Fang M, Shin S Y, Lee D, Kim K H, Shin C. 2022. Sequence optimization and multiple gene-targeting improve the inhibitory efficacy of exogenous double-stranded RNA against pepper mottle virus in Nicotiana benthamiana. Applied Biological Chemistry, 65, 87.

Li M, Rollins J A. 2010. The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genetics and Biology, 47, 531-538.

Lin L, Fan J L, Li P P, Liu D X, Ren S C, Lin K Y, Fang Y J, Lin C, Wang Y P, Wu J. 2022. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: Isolation, characterization, and application in host-induced gene silencing. Journal of Experimental Botany, 73, 6663-6677.

Lin L, Zhang X R, Fan J L, Li J W, Ren S C, Gu X, Li P P, Xu M L, Xu J, Lei W J, Liu D X, Sun Q F, Cai G Q, Yang QY, Wang Y P, Wu J. 2024. Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape. Nature Communications, 15, 5059.

Lu P, Guo L, Wang Z Z, Li B B, Li J, Li Y H, Qiu D, Shi W Q, Yang L J, Wang N, Guo G H, Xie J Z, Wu Q H, Chen Y X, Li M M, Zhang H Z, Dong L L, Zhang P P, Zhu K Y, Yu D Z, et al. 2020. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nature Communications, 11, 680.

Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307-1313.

McLoughlin A G, Wytinck N, Walker P L, Girard I J, Rashid K Y, de Kievit T, Fernando W G D, Whyard S, Belmonte M F. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8, 7320.

Mukherjee S, Beligala G, Feng C C, Marzano S Y. 2024. Double-stranded RNA targeting white mold Sclerotinia sclerotiorum argonaute 2 for disease control via spray-induced gene silencing. Phytopathology, 114, 1253-1262.

Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130-3141.

Pant P, Kaur J. 2023. Spray-induced gene silencing of SsOah1 and SsCyp51 confers protection to Nicotiana benthamiana and Brassica juncea against Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 127, 102109.

Pant P, Kaur J. 2024. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1. Planta, 259, 153.

Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York, USA. p. 94.

Taylor A, Rana K, Handy C, Clarkson J P. 2018. Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen. Plant Pathology, 67, 433-444.

Tian L, Li J, Xu Y, Qiu Y L, Zhang Y L, Li X. 2024. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control. The Plant Journal, 118, 324-344.

USDARS (U.S. Department of Agriculture-Agricultural Research Service). 2022. 2022 national sclerotinia initiative annual meeting booklet. [2025-10-24]. https://www.ars.usda.gov/ARSUSERFILES/30600500/SCLEROTINIA/2022%20NSI%20ANNUAL%20MEETING/2022%20NSI%20ANNUAL%20MEETING%20BOOKLET%20-%20FINAL.PDF

Wang M, Jin H L. 2017. Spray-induced gene silencing: A powerful innovative strategy for crop Protection. Trends in Microbiology, 25, 4-6.

Wu J, Cai G Q, Tu J Y, Li L X, Liu S, Luo X P, Zhou L P, Fan C C, Zhou Y M. 2013. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE, 8, e67740.

Wu J, Yin S L, Lin L, Liu D X, Ren S C, Zhang W J, Meng W C, Chen P P, Sun Q F, Fang Y J, Wei C X, Wang Y P. 2022. Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napusThe Crop Journal, 10, 661-671.

Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G Q, Zhang C Y, Fan C C, Wang Y P, Zhou Y M. 2016. Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Frontiers in Plant Science, 7, 1418.

Wytinck N, Ziegler D J, Walker P L, Sullivan D S, Biggar K T, Khan D, Sakariyahu S K, Wilkins O, Whyard S, Belmonte M F. 2022. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napusPLoS ONE, 17, e0261102.

Xu Y, Tan J Y, Lu J X, Zhang Y L, Li X. 2024. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Biotechnology Journal, 22, 262-277.

Yang P, Yi S Y, Nian J N, Yuan Q S, He W J, Zhang J B, Liao Y C. 2021. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat. Frontiers in Microbiology, 12, 660976.

Zhang C, Xu Y, Li L, Wu M S, Fang Z Y, Tan J Y, Rollins J A, Lin H H, Huang X Y, Mansfield S D, Li X, Zhang Y L. 2025. A GDP-mannose-1-phosphate guanylyltransferase as a potential HIGS target against Sclerotinia sclerotiorum. Plos Pathogens, 21, e1013129.

Zhang F Q, Huang J Y, Tang M Q, Cheng X H, Liu Y Y, Tong C B, Yu J Y, Sadia T, Dong C H, Liu L Y, Tang B J, Chen J G, Liu S Y. 2019. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. Journal of Integrative Plant Biology, 61, 75-88.

Zhao C J, Zhang Y, Gao L X, Xie M L, Zhang X, Zeng L Y, Liu J, Liu Y Y, Zhang Y Y, Tong C B, Hu Q, Cheng X H, Liu L J, Liu S Y. 2023. Genome editing of RECEPTOR-LIKE KINASE 902 confers resistance to necrotrophic fungal pathogens in Brassica napus without growth penalties. Plant Biotechnology Journal, 22, 538-540.

Zhao J H, Liu Q Y, Xie Z M, Guo H S. 2024. Exploring the challenges of RNAi-based strategies for crop protection. Advanced Biotechnology, 2, 23.

[1] Yajie Gao, Song Wang, Anqi Di, Chao Hai, Di Wu, Zhenting Hao, Lige Bu, Xuefei Liu, Chunling Bai, Guanghua Su, Lishuang Song, Zhuying Wei, Zhonghua Liu, Lei Yang, Guangpeng Li. Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1125-1136.
[2] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[3] Shuangxi Zhang, Xinlin Wei, Rongbo Wang, Hejing Shen, Hehuan You, Langjun Cui, Yi Qiang, Peiqing Liu, Meixiang Zhang, Yuyan An. Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1064-1073.
[4] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[5] Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1114-1124.
[6] Yulong Guo, Wanzhuo Geng, Botong Chen, Zhimin Cheng, Yihao Zhi, Yanhua Zhang, Donghua Li, Ruirui Jiang, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Hong Li, Xiaojun Liu. Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus)[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1150-1164.
[7] Jinxiang Gao, Bing Li, Pei Qin, Sihao Zhang, Xiaoting Li, Yebitao Yang, Wenhao Shen, Shan Tang, Jijun Li, Liang Guo, Jun Zou, Jinxing Tu. A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus[J]. >Journal of Integrative Agriculture, 2026, 25(3): 879-892.
[8] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[9] Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut[J]. >Journal of Integrative Agriculture, 2026, 25(3): 893-902.
[10] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[11] Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density[J]. >Journal of Integrative Agriculture, 2026, 25(3): 938-951.
[12] Ping Lin, Shanshan Liu, Zhidan Fu, Kai Luo, Yiling Li, Xinyue Peng, Xiaoting Yuan, Lida Yang, Tian Pu, Yuze Li, Taiwen Yong, Wenyu Yang. Rhizosphere flavonoids alleviate inhibition of soybean nodulation caused by shading under maize–soybean strip intercropping[J]. >Journal of Integrative Agriculture, 2026, 25(3): 952-964.
[13] Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. Critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities[J]. >Journal of Integrative Agriculture, 2026, 25(3): 965-976.
[14] Ming Li, Jingjing Wang, Jia’nan Wen, Juan J. Loor, Qianming Jiang, Jingyi Wang, Huijing Zhang, Yue Yang, Wei Yang, Bingbing Zhang, Chuang Xu. ACSL4 is a target for β-hydroxybutyrate-induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1137-1149.
[15] Jieyu Dai, Ze Xu, Qianjin Zhan, Jingwen Zhu, Lijun Cao, Zhanling Lu, Yuting Xu, Tongyang Kang, Yanan Hu, Caiping Zhao. Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening[J]. >Journal of Integrative Agriculture, 2026, 25(3): 977-988.
No Suggested Reading articles found!