Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Physics-informed and prior-data driven: A hybrid Stacking framework for rice growth parameter inversion

Tianao Wu1, 2, Junjie Zheng1, Minghan Cheng3, Kaihua Liu2, Xiyun Jiao2, 4#

1 College of Environmental Science and Engineering, Key Laboratory of Water Resources Utilization and ProtectionXiamen University of Technology, Xiamen 361024China

2 College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China

3 Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China

4 Cooperative Innovation Center for Water Safety and Hydro Science, Hohai University, Nanjing 211100, China

 Highlights 

The PROSAIL-Dw model was developed for simulating the rice canopy reflectance in scenarios that the underlying surface was covered by a water layer.

C-Vine Copula-based parameter simulation method could retain inter-parameter correlations, generating data more consistent with actual rice growth status.

The proposed hybrid inversion framework significantly enhanced inversion accuracy and reliability for LAI, AGB, CCC, and CNC.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

准确监测水稻生长状况对于稻田科学水肥管理至关重要。利用遥感数据结合辐射传输模型和人工智能算法可以实现半机理的参数反演。然而,常用的混合反演模型难以适应水层覆盖的稻田场景。此外,数据模拟方法通常忽略参数间的相关性,导致模拟数据与实际不符。为解决上述问题,本研究开发了考虑下垫面水分状态对冠层反射率影响的PROSAIL-Dw模型,并提出了一种基于C-Vine Copula多变量联合先验知识数据模拟方法,最终构建了一种基于堆叠模型的新型混合框架,用于从多光谱影像中反演水稻生长参数。结果表明,通过引入反映水层存在和深度的两个参数,PROSAIL-Dw模型能够更准确地模拟水层覆盖下的近红外反射率(低氮处理下R2值提高了0.42)。采用C-Vine Copula方法模拟的生长参数能够保持参数间的相关性,从而有效提高了堆叠模型的精度(对比传统方法rRMSE降低了5.81%~15.00%R2提高了0.19~0.30)。本研究构建的混合反演框架进一步提高了水稻生长参数反演的精度和可靠性,对早期稻田水肥科学管理具有重要的实践意义。



Abstract  

Accurate monitoring of rice growth status is essential for scientific water and fertilizer management in paddy fields. Using remote sensing data combined with radiative transfer models and artificial intelligence algorithms can realize the semi-mechanism inversion. However, the commonly used hybrid inversion models have difficulties in adapting to paddy field scenarios covered with water layers. In addition, the data simulation methods often ignore the correlations between parameters, leading to distortion of the simulated data. To address these challenges, by developing the PROSAIL-Dw model considering the influence of the underlying surface moisture state on the canopy reflectance and proposing a multivariable joint prior knowledge data simulation method based on C-Vine Copula, this study proposed a novel hybrid framework based on Stacking model for retrieving rice growth parameters from multispectral imagery. The results indicated that, by introducing two parameters reflecting the presence and depth of the water layer, the PROSAIL-Dw model can more accurately simulate the NIR reflectance with water layer coverage (with R² increased by 0.42 for low nitrogen treatment). The growth parameters simulated by the C-Vine Copula method could retain the correlations, thus effectively improving the accuracy of the Stacking model compared with conventional methods (with rRMSE decreased by 5.81%-15.00%, and R² increased by 0.19-0.30). The hybrid inversion framework constructed in this study has further improved the accuracy and reliability of rice growth parameter inversion, and has important practical value for the scientific management of water and fertilizer in early-stage paddy fields.

Keywords:  UAV multispectral imagery       PROSAIL-D model              vegetation indices              Vine copula              stacking ensemble learning model  
Online: 05 February 2026  
Fund: 

This research was funded by the National Natural Science Foundation of China (52509071) and Jiangsu Province Key Research and Development Program (BE2022390).

About author:  #Correspondence Xiyun Jiao, E-mail: xyjiao@hhu.edu.cn

Cite this article: 

Tianao Wu, Junjie Zheng, Minghan Cheng, Kaihua Liu, Xiyun Jiao. 2026. Physics-informed and prior-data driven: A hybrid Stacking framework for rice growth parameter inversion. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.003

Aas K, Czado C, Frigessi A, Bakken H. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44, 182–198.

Beget M E, Di Bella C M. 2007. Flooding: The effect of water depth on the spectral response of grass canopies. Journal of Hydrology, 335, 285–294.

Berger K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T. 2018. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sensing, 10, 85.

Brechmann E C, Schepsmeier U. 2013. Modeling dependence with C-and D-vine copulas: The R package CDVine. Journal of Statistical Software, 52, 1–27.

Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.

Caicedo J P R, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G. 2014. Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 1249–1259.

de Castro A I, Shi Y, Maja J M, Peña J M. 2021. UAVs for vegetation monitoring: Overview and recent scientific contributions. Remote Sensing, 13, 2139.

Cover T, Hart P. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.

Croft H, Chen J M, Luo X, Bartlett P, Chen B, Staebler R M. 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23, 3513–3524.

Demmig-Adams B, Adams W W. 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21–26.

Dißmann J, Brechmann E C, Czado C, Kurowicka D. 2013. Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59, 52–69.

Doktor D, Lausch A, Spengler D, Thurner M. 2014. Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sensing, 6, 12247–12274.

Duan S B, Li Z L, Wu H, Tang B H, Ma L, Zhao E, Li C. 2014. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 26, 12–20.

FAO (Food and Agriculture Organization of the United Nations), IFAD (International Fund for Agricultural Development), UNICEF (the United Nations Children’s Fund), WFP (World Food Programme), WHO (World Health Organization). 2022. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable. Rome.

Freund Y, Schapire R, Abe N. 1999. A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence, 14, 1612.

Gitelson A A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165–173.

Heiskanen J, Rautiainen M, Stenberg P, Mõttus M, Vesanto V H. 2013. Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS Journal of Photogrammetry and Remote Sensing, 78, 1–14.

Herman J, Usher W. 2017. SALib: An open-source Python library for sensitivity analysis. Journal of Open Source Software, 2, 97.

Impollonia G, Croci M, Blandinières H, Marcone A, Amaducci S. 2022. Comparison of PROSAIL model inversion methods for estimating leaf chlorophyll content and LAI using UAV imagery for hemp phenotyping. Remote Sensing, 14, 5801.

Iwanaga T, Usher W, Herman J, Salib T. 2022. 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, 18155.

Jacquemoud Stéphane, Baret F. 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

Kurowicka D, Joe H. 2011. Dependence Modeling: Vine Copula Handbook. World Scientific Publishing Company, NL.

Khorram S, Van der Wiele C F, Koch F H, Nelson S A, Potts M D. 2016. Principles of Applied Remote Sensing. Springer.

Lampayan R M, Rejesus R M, Singleton G R, Bouman B A. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170, 95–108.

Lundberg S M, Erion G, Chen H, DeGrave A, Prutkin J M, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S I. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2, 56–67.

Lundberg S M, Lee S I. 2017. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4768–4777

Nguy-Robertson A, Gitelson A, Peng Y, Viña A, Arkebauer T, Rundquist D. 2012. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy journal, 104, 1336–1347.

Sagi O, Rokach L. 2018. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, e1249.

Sit M, Demiray B, Xiang Z, Ewing G, Sermet Y, Demir I. 2020. A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82, 2635-2670.

Stoner E R, Baumgardner M. 1981. Characteristic variations in reflectance of surface soils. Soil Science Society of America Journal, 45, 1161–1165.

Sun J, Wang L, Shi S, Li Z, Yang J, Gong W, Wang S, Tagesson T. 2022. Leaf pigment retrieval using the PROSAIL model: Influence of uncertainty in prior canopy-structure information. The Crop Journal, 10, 1251–1263.

Sun T, Fang H, Liu W, Ye Y. 2017. Impact of water background on canopy reflectance anisotropy of a paddy rice field from multi-angle measurements. Agricultural and Forest Meteorology, 233, 143–152.

Svozil D, Kvasnicka V, Pospichal J. 1997. Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39, 43–62.

Swinehart D F. 1962. The beer-lambert law. Journal of Chemical Education, 39, 333.

Verrelst J, Malenovský Z, Van der Tol C, Camps-Valls G, Gastellu-Etchegorry J P, Lewis P, North P, Moreno J. 2019. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surveys in Geophysics, 40, 589–629.

Wan L, Cen H, Zhu J, Zhang J, Zhu Y, Sun D, Du X, Zhai L, Weng H, Li Y, Li X, Bao Y, Shou J, He Y. 2020. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer – a case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291, 108096.

Wan L, Zhang J, Dong X, Du X, Zhu J, Sun D, Liu Y, He Y, Cen H. 2021a. Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from PROSAIL model. Computers and Electronics in Agriculture, 187, 106304.

Wan L, Zhu J, Du X, Zhang J, Han X, Zhou W, Li X, Liu J, Liang F, He Y, Cen H. 2021b. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles. Journal of Experimental Botany, 72, 4691–4707.

Wu T, Liu K, Cheng M, Gu Z, Guo W, Jiao X. 2025. Paddy field scale evapotranspiration estimation based on two-source energy balance model with energy flux constraints and UAV multimodal data. Remote Sensing, 17, 1662.

Wu T, Zhang W, Wu S, Cheng M, Qi L, Shao G, Jiao X. 2023. Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods. Frontiers in Plant Science, 13, 1088499.

Xiao X, Boles S, Frolking S, Li C, Babu J Y, Salas W, Moore B. 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100, 95–113.

Yang Z, Tian J, Wang Z, Feng K. 2022. Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. European Journal of Agronomy, 140, 126589.

Yuan D, Zhang S, Li H, Zhang J, Yang S, Bai Y. 2022. Improving the gross primary productivity estimate by simulating the maximum carboxylation rate of the crop using machine learning algorithms. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15.

Zeng Y, Hao D, Huete A, Dechant B, Berry J, Chen J M, Joiner J, Frankenberg C, Bond-Lamberty B, Ryu Y. 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3, 477–493.

Zhang Y, Jin X, Shi L, Wang Y, Qiao H, Zha Y. 2025. A hybrid method for water stress evaluation of rice with the radiative transfer model and multidimensional imaging. Plant Phenomics, 7, 100016.

Zhou G, Tian C, Han Y, Niu C, Miao H, Jing G, Lopez F P A, Yan G, Najjar H S M, Zhao F, Sathyendranath S. 2024. Canopy reflectance modeling of row aquatic vegetation: AVRM and AVMC. Remote Sensing of Environment, 311, 114296.

[1] Yajie Gao, Song Wang, Anqi Di, Chao Hai, Di Wu, Zhenting Hao, Lige Bu, Xuefei Liu, Chunling Bai, Guanghua Su, Lishuang Song, Zhuying Wei, Zhonghua Liu, Lei Yang, Guangpeng Li. Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1125-1136.
[2] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[3] Shuangxi Zhang, Xinlin Wei, Rongbo Wang, Hejing Shen, Hehuan You, Langjun Cui, Yi Qiang, Peiqing Liu, Meixiang Zhang, Yuyan An. Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1064-1073.
[4] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[5] Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1114-1124.
[6] Yulong Guo, Wanzhuo Geng, Botong Chen, Zhimin Cheng, Yihao Zhi, Yanhua Zhang, Donghua Li, Ruirui Jiang, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Hong Li, Xiaojun Liu. Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus)[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1150-1164.
[7] Jinxiang Gao, Bing Li, Pei Qin, Sihao Zhang, Xiaoting Li, Yebitao Yang, Wenhao Shen, Shan Tang, Jijun Li, Liang Guo, Jun Zou, Jinxing Tu. A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus[J]. >Journal of Integrative Agriculture, 2026, 25(3): 879-892.
[8] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[9] Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut[J]. >Journal of Integrative Agriculture, 2026, 25(3): 893-902.
[10] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[11] Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density[J]. >Journal of Integrative Agriculture, 2026, 25(3): 938-951.
[12] Ping Lin, Shanshan Liu, Zhidan Fu, Kai Luo, Yiling Li, Xinyue Peng, Xiaoting Yuan, Lida Yang, Tian Pu, Yuze Li, Taiwen Yong, Wenyu Yang. Rhizosphere flavonoids alleviate inhibition of soybean nodulation caused by shading under maize–soybean strip intercropping[J]. >Journal of Integrative Agriculture, 2026, 25(3): 952-964.
[13] Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. Critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities[J]. >Journal of Integrative Agriculture, 2026, 25(3): 965-976.
[14] Ming Li, Jingjing Wang, Jia’nan Wen, Juan J. Loor, Qianming Jiang, Jingyi Wang, Huijing Zhang, Yue Yang, Wei Yang, Bingbing Zhang, Chuang Xu. ACSL4 is a target for β-hydroxybutyrate-induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1137-1149.
[15] Jieyu Dai, Ze Xu, Qianjin Zhan, Jingwen Zhu, Lijun Cao, Zhanling Lu, Yuting Xu, Tongyang Kang, Yanan Hu, Caiping Zhao. Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening[J]. >Journal of Integrative Agriculture, 2026, 25(3): 977-988.
No Suggested Reading articles found!