Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Wheat plant architecture modulates radiation use efficiency under regional low-light conditions

Tingting Zhu, Zhenyu Liang, Dahai He, Jiabo Chen, Xiulan Huang, Hongkun Yang#, Gaoqiong Fan#

College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China

 Highlights 

Flag leaf drooping and inversion reduces the stomatal area, substantially suppressing the photosynthetic rate.

Overcoming the photosynthetic constraints associated with thin leaves (which typically exhibit low chlorophyll content) requires efficient CO2 exchange capacity, high carbon fixation ability, and elevated Rubisco affinity for CO2.

Light interception is the primary driver of RUE and yield, compared to photosynthetic capacity and assimilate utilization.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

提高光能利用效率对增加小麦产量至关重要,然而在弱光条件下,植株株型性状对光能利用效率的影响尚不明确。本研究评估了弱光条件下小麦株型性状对光能利用效率的影响。选取了四个冠层结构迥异的小麦品种:CM88(旗叶直立内卷、多穗型)、SM1963(旗叶半直立、多穗型)、SM1868(旗叶半直立小穗型)和SM830(旗叶披垂大穗型)。通过光能截获、光合能力和同化物利用三个过程,综合评价了其对光能利用效率的影响。冠层光分布均匀性依次降低:CM88 > SM1963 SM1868 > SM830。相反,中下层光能截获率以SM1963最高,其次为CM88SM1868SM830最低。CM88的气孔面积、气孔导度和净光合速率最高,表现出最强的光合能力;SM1963SM1868的气孔导度与净光合速率居中(光合能力中等);而SM830的光合能力最弱。在调控同化物利用的关键过程方面,即磷酸蔗糖合成酶和蔗糖合成酶活性峰值及相应的籽粒灌浆速率,SM1963SM830表现最优,CM88居中,SM1868最低。综合各过程,CM88SM1963实现了最高的整体光能利用效率。这一优异表现源于两者不同的优势组合:CM88在光能截获和光合能力上突出,同化物利用能力中等;而SM1963在光能截获和同化物利用上表现优异,光合能力中等。重要的是,光能截获对光能利用效率和产量的贡献最大,显著超过光合能力和同化物利用的贡献,具体占比分别为51.4%74.2%。正是由于各过程之间协调平衡,无明显瓶颈,CM88SM1963才实现了最高的光能利用效率和产量。综上所述,在弱光条件下,实现高光能利用效率的优化小麦株型应兼具直立或半直立旗叶(以优化光能截获)和高穗密度(以确保强大的库容能力)。



Abstract  

Improving radiation use efficiency (RUE) is critical for increasing wheat yield; however, the influence of plant architectural traits on RUE under low-light conditions is poorly understood. In this study, the effects of the architectural traits of wheat plants on RUE under low-light conditions were assessed. Four wheat varieties with distinct canopy architectures were examined: CM88 (erect and involute flag leaves, high spike density), SM1963 (semierect flag leaves, high spike density), SM1868 (drooping flag leaves, small spike size), and SM830 (prostrate flag leaves, large spike size). Their influence on RUE was evaluated via processes of light interception, photosynthetic capacity, and assimilate utilization. The canopy light distribution uniformity decreased progressively: CM88>SM1963 and SM1868>SM830. In contrast, the radiation interception rate in the middle and lower layers was highest in SM1963, followed by CM88/SM1868, and then SM830. CM88 exhibited the highest stomatal area, stomatal conductance (gs), and net photosynthetic rate (Pn), indicating superior photosynthetic capacity. SM1963 and SM1868 showed intermediate gs and Pn (moderate photosynthetic capacity), while SM830 exhibited the lowest gs and Pn (weakest photosynthetic capacity). The key processes governing assimilate utilization—peak activities of sucrose phosphate synthase and sucrose synthase, and the consequent grain filling ratewere highest in SM1963 and SM830. CM88 displayed intermediate levels for these parameters, whereas SM1868 showed the lowest level. Integrating these processes, CM88 and SM1963 achieved the highest overall RUE. This high performance was driven by divergent strengths: CM88 excelled in light interception and photosynthetic capacity with moderate assimilate utilization performance, whereas SM1963 exhibited superior interception and assimilate utilization with moderate photosynthetic capacity. Importantly, light interception contributed the largest share to both RUE and yield, significantly exceeding the contributions from photosynthetic capacity and assimilate utilization, with specific proportions of 51.4 and 74.2%, respectively. This well-coordinated balance among processes, free of any major bottleneck, enabled CM88 and SM1963 to achieve the highest RUE and yield. In conclusion, under low-light conditions, an optimal wheat architecture for high RUE combines erect or semi-erect flag leaves (to optimize light interception) with high spike density (to ensure strong sink capacity).

Keywords:  plant architectural traits              canopy light distribution              photosynthetic rate              stomatal area              assimilate utilization              radiation use efficiency  
Online: 05 February 2026  
Fund: 

We are grateful for financial support from the National Natural Science Foundation of China (U24A20401), the Science and Technology Major Project of Sichuan Province, China (2022ZDZX0014) and the Key Research and Development Project of Sichuan Province, China (2021YFYZ0002).

About author:  #Correspondence Hongkun Yang, E-mail: yhk159357@163.com; Gaoqiong Fan, E-mail: fangao20056@126.com

Cite this article: 

Tingting Zhu, Zhenyu Liang, Dahai He, Jiabo Chen, Xiulan Huang, Hongkun Yang, Gaoqiong Fan. 2026. Wheat plant architecture modulates radiation use efficiency under regional low-light conditions. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.001

Afzal A, Duiker S W, Watson J E. 2017. Leaf thickness to predict plant water status. Biosystems Engineering156, 148-156.

Baker N R, Bowyer J R. 1994. Photoinhibition of photosynthesis: From molecular mechanisms to the field. Agriculturral Science, 124, 156-164.

Brdar-Jokanovic M, Kobiljski B, Marija K B. 2006. Grain filling parameters and yield components in wheat. Genetika, 42, 175-181.

Caviglia O P, Sadras V O, Andrade F H. 2004. Intensification of agriculture in the south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in double-cropped wheat–soybean. Field Crops Research87, 117-129.

Cheng Y, Xiao F, Huang D, Yang Y, Cheng W, Jin S, Li G, Ding Y, Paul M J, Liu Z. 2024. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Research306, 109223.

Cirilo A G, Dardanelli J, Balzarini M, Andrade F H, Cantarero M, Luque S, Pedrol H M. 2009. Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Research113, 116-124.

Crafts-Brandner S J, Salvucci M E. 2004. Analyzing the impact of high temperature and CO2 on net photosynthesis: Biochemical mechanisms, models and genomics. Field Crops Research90, 75-85.

Dong C, Fu Y, Liu G, Liu H. 2014. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Advances in Space Research53, 1557-1566.

Dong S T. 1991. Relationship between canopy photosynthetic capacity and yield in high-yielding winter wheat. Acta Agronomica Sinica, 6, 461-469. (in Chinese)

Du X, Chen B, Shen T, Zhang Y, Zhou Z. 2015. Effect of cropping system on radiation use efficiency in double-cropped wheat–cotton. Field Crops Research170, 21-31.

Fan W J, Gai Y Y, Xu X R, Yan B Y. 2013. The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing. Science China-Earth Sciences56, 1548-1554.

Giunta F, Motzo R, Nemeh A, Bassu S. 2023. Changes in radiation capture and use in response to the nitrogen status of durum wheat cultivars at different developmental stages. Field Crops Research297, 108947.

Hammer G L, Zhanshan D, Greg M L, Al D, Carlos M, Jeff S, Chris Z, Steve P, Mark C. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt. Crop Science, 49, 299-312.

He P, Wright I J, Zhu S, Onoda Y, Liu H, Li R, Liu X, Hua L, Oyanoghafo O O, Ye Q. 2019. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist223, 607-618.

Huang S, Gao Y, Li Y, Xu L, Tao H, Wang P. 2016. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. The Crop Journal5, 52-62.

Huang X, Wang J, Wang Q, Li H, Hu W, Wang S, Zhou Z. 2024. Phosphorus-induced improvement of photosynthate synthesis and transport in the leaf subtending to cotton boll provided sufficient sucrose for fiber thickening during the crucial period and improved fiber bundle strength. Field Crops Research306, 109230.

Hunt J R, Hayman P T, Richards R A, Passioura J B. 2018. Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crops Research224, 126-138.

Islam M S, Peng S, Visperas R M, Ereful N, Bhuiya M S U, Julfiquar A W. 2007. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Research, 101, 240-248.

Juan S. 2010. Relationship between dry matter accumulation and distribution to yield of different maize cultivars. Guangdong Agricultural Sciences, 13, 566-567. (in Chinese)

Kadioglu A, Terzi R, Saruhan N, Saglam A. 2012. Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Science182, 42-48.

Kitao M, Kitaoka S, Harayama H, Tobita H, Agathokleous E, Utsugi H. 2018. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Scientific Reports, 8, 503.

Lazar T. 2003. Review of Plant Physiology of 3rd ed. by Taiz L and Zeiger E. Annals of Botany91, 750-751.

Lefcheck J S. 2016. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.

Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler E S, Zhang Z, Wang T, Li Y. 2015. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE10, e0121624.  

Li J, Lv M Y, Wan H S, Yang W Y, Tang Y L, Li C S. 2016. Breakthrough wheat variety Chuanmai 104 achieves remarkable results in large-scale demonstration and extension. Science and Technology of Sichuan Agriculture, 1, 7-8. (in Chinese)

Li J H, Xie R, Wang K, Ming B, Guo Y Q, Zhang G, Li S. 2015. Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal107, 829-834.

Li J W, Yang J P, Fei P P, Song J L, Li D , Ge C S, Chen W Y. 2009. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Research114, 426-432.

Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail A M, Zhang Z. 2024. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). New Phytologist241, 1250-1265.

Li P, Yin W, Zhao L, Wan P, Fan Z, Hu F, Nan Y, Sun Y, Fan H, He W, Chai Q. 2025. No tillage with straw mulching enhanced radiation use efficiency of wheat via optimizing canopy radiation interception and photosynthetic properties. Field Crops Research326, 109854.

Liu C, Li Y, Xu L, Chen Z, He N. 2019. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports9, 5803.

Liu G, Yang H, Xie R, Yang Y, Liu W, Guo X, Xue J, Ming B, Wang K, Hou P, Li S. 2021. Genetic gains in maize yield and related traits for high-yielding cultivars released during 1980s to 2010s in China. Field Crops Research270, 108223.

Liu T, Pan Y, Lu Z, Ren T, Lu J. 2020. Canopy light and nitrogen distribution are closely related to nitrogen allocation within leaves in Brassica napus L. Field Crops Research258, 107958.

Lombardini L, Restrepo-Diaz H, Volder A. 2009. Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves. Journal of the American Society for Horticultural Science134, 372-378.

Long S P, Zhu X G, Naidu S L, Ort D R. 2010. Can improvement in photosynthesis increase crop yields? Plant Cell & Environment29, 315-330.

Ma D L, Xie R Z, Niu X K, Li S K, Long H L, Liu Y E. 2014. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. European Journal of Agronomy58, 1-10.

Maloney V J, Park J Y, Unda F, Mansfield S D. 2015. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany66, 4383-4394.

Mantilla-Perez M B, Salas Fernandez M G. 2017. Differential manipulation of leaf angle throughout the canopy: Current status and prospects. Journal of Experimental Botany68, 5699-5717.

Milla R, Reich P B. 2007. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B (Biological Sciences), 274, 2109-2115.

Monteith J L, Moss C J. 1997. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B281, 277-294.

Oguchi R, Onoda Y, Terashima I, Tholen D. 2018. Leaf anatomy and function. In: Adams W W, Terashima I, eds., The Leaf: A Platform for Performing Photosynthesis. Springer. pp. 145-171.

Ort D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Croce R, Hanson M R, Hibberd J M, Long S P, Moore T A, Moroney J, Niyogi K K, Parry M A J, Peralta-Yahya P P, Prince R C, Redding K E, Spalding M H, van Wijk K J, Vermaas W F J, et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America112, 8529-8536.

Piao L, Qi H, Li C, Zhao M. 2016. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Research198, 258-268.

Richards R A, Cavanagh C R, Riffkin P. 2019. Selection for erect canopy architecture can increase yield and biomass of spring wheat. Field Crops Research244, 107649.

Sadras V O, Villalobos F J, Fereres E. 2016. Radiation interception, radiation use efficiency and crop productivity. In: Villalobos F J, Fereres E, eds., Principles of Agronomy for Sustainable Agriculture. Springer. pp. 169-188.

Schieving F, Werger M J A, Hirose T. 1992. Canopy structure, nitrogen distribution and whole canopy photosynthetic carbon gain in growing and flowering stands of tall herbs. Vegetatio102, 173-181.

Sheue C R, Liu J W, Ho J F, Yao A W, Wu Y H, Das S, Tsai C C, Chu H A, Ku M S, Chesson P. 2015. A variation on chloroplast development: The bizonoplast and photosynthetic efficiency in the deep-shade plant Selaginella erythropus. American Jouranl of Botany102, 500-511.

Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science10, 623-629.

Taiz L, Zeiger E. 2010. Plant Physiology. 5th ed. Sinauer Associates Inc., Sunderland, MA, USA.

Tao Z Q, Wang D M, Ma S K, Yang Y S, Zhao G C, Chang X H. 2018. Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. Journal of Integrative Agriculture, 17, 566-578.

Terashima I, Hanba Y T, Tazoe Y, Vyas P, Yano S. 2006. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 57, 343-354.

Townsend A J, Retkute R, Chinnathambi K, Randall J W P, Foulkes J, Carmo-Silva E, Murchie E H. 2018. Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiology176, 1233-1246.

Van Herwaarden A F, Farquhar G D, Angus J F, Richards R A, Howe G N. 1998a'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Australian Journal of Agricultural Research49, 1083-1094.

Van Herwaarden A F, Richards R A, Farquhar G D, Angus J F. 1998b. 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser III. The influence of water deficit and heat shock. Crop & Pasture Science49, 1095-1110.

Wang H M, Ouyang Y N, Liu F M, Zhu L F, Yu S M, Jin Q Y. 2010. Advances in understanding the influence of plant architecture on light use efficiency in rice. China Rice16, 12-15. (in Chinese)

Wang J, Sun X, Hussain S, Yang L, Gao S, Zhang P, Chen X, Ren X. 2024. Reduced nitrogen rate improves post-anthesis assimilates to grain and ameliorates grain-filling characteristics of winter wheat in dry land. Plant and Soil499, 91-112.

Wang W, Cai C, He J, Gu J, Zhu G, Zhang W, Zhu J, Liu G. 2020. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research248, 107605.

Watt D A, McCormick A J, Govender C, Carson D L, Cramer M D, Huckett B I, Botha F C. 2005. Increasing the utility of genomics in unravelling sucrose accumulation. Field Crops Research92, 149-158.

White J W, Montes R C. 2005. Variation in parameters related to leaf thickness in common bean (Phaseolus vulgaris L.). Field Crops Research91, 7-21.

Xu C, Gao Y, Tian B, Ren J, Meng Q, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research200, 71-79.

Xue W, Otieno D, Ko J, Werner C, Tenhunen J. 2016. Conditional variations in temperature response of photosynthesis, mesophyll and stomatal control of water use in rice and winter wheat. Field Crops Research199, 77-88.

Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, Li M. 2016. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genetics, 17, 94.

Yang F. 2024. Effect of row spacing configuration on canopy structure and yield in wheat with different plant and leaf morphologies. MSc thesis, Henan Agricultural University. (in Chinese)

Ye Z P. 2010. Advances in photosynthetic response models to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740. (in Chinese)

Zhang L, Zhao Y, Zhang J L, Chen Y, Feng J J, Qu Y F, Huang J L. 2020. Differences in photosynthetic characteristics of photosynthetically active leaves among cotton varieties with distinct leaf morphologies. Journal of Shanxi Agricultural Sciences48, 172-176. (in Chinese)

Zhang Y Y, Li Y, Liu X C, Huang C, Lv J N, Zhou H J, Ma S T, Qin A Z, Gao Z L, Wu G H, Chen D, Ji X N, Liu Z D. 2025. Effect of drip irrigation under subsoiling tillage on post-anthesis dry matter accumulation and grain filling characteristics in winter wheat. Acta Agronomica Sinica, 6, 1-16. (in Chinese)

Zhang Z, Xu S, Wei Q, Yang Y, Pan H, Fu X, Fan Z, Qin B, Wang X, Ma X, Xiong S. 2022. Variation in Leaf Type, Canopy architecture, and light and nitrogen distribution characteristics of two winter wheat (Triticum aestivum L.) varieties with high nitrogen-use efficiency. Agronomy, 12, 223-231.

Zhao X R, Zhang Y, Zhang J H, Chen J S, Zhang W D, Ma Y H, Meng Q F, Yan Z X, Wang Y Z. 2024. Effect of plant density and row spacing on yield, canopy characteristics, and lodging resistance in wheat with erect plant architecture. Chinese Agricultural Science Bulletin40, 13-22. (in Chinese)

Zhou B, Yue Y, Sun X, Wang X, Wang Z, Ma W, Zhao M. 2016. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal108, 196-204.

Zhu X G, Long S P, Ort D R. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology61, 235-261.

[1] Yajie Gao, Song Wang, Anqi Di, Chao Hai, Di Wu, Zhenting Hao, Lige Bu, Xuefei Liu, Chunling Bai, Guanghua Su, Lishuang Song, Zhuying Wei, Zhonghua Liu, Lei Yang, Guangpeng Li. Myostatin promotes proliferation of bovine muscle satellite cells through activating TRPC4/Ca2+/calcineurin/NFATc3 pathway[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1125-1136.
[2] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[3] Shuangxi Zhang, Xinlin Wei, Rongbo Wang, Hejing Shen, Hehuan You, Langjun Cui, Yi Qiang, Peiqing Liu, Meixiang Zhang, Yuyan An. Nicotinamide mononucleotide confers broad-spectrum disease resistance in plants[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1064-1073.
[4] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[5] Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang. An InDel in the promoter of ribosomal protein S27-like gene regulates skeletal muscle growth in pigs[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1114-1124.
[6] Yulong Guo, Wanzhuo Geng, Botong Chen, Zhimin Cheng, Yihao Zhi, Yanhua Zhang, Donghua Li, Ruirui Jiang, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Hong Li, Xiaojun Liu. Genome-wide characteristic and functional analyses of the BMP gene family reveal its role in response to directed selection in chicken (Gallus gallus)[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1150-1164.
[7] Jinxiang Gao, Bing Li, Pei Qin, Sihao Zhang, Xiaoting Li, Yebitao Yang, Wenhao Shen, Shan Tang, Jijun Li, Liang Guo, Jun Zou, Jinxing Tu. A single nucleotide substitution in BnaC02.LBD6 promoter causes blade shape variation in Brassica napus[J]. >Journal of Integrative Agriculture, 2026, 25(3): 879-892.
[8] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[9] Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut[J]. >Journal of Integrative Agriculture, 2026, 25(3): 893-902.
[10] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[11] Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density[J]. >Journal of Integrative Agriculture, 2026, 25(3): 938-951.
[12] Ping Lin, Shanshan Liu, Zhidan Fu, Kai Luo, Yiling Li, Xinyue Peng, Xiaoting Yuan, Lida Yang, Tian Pu, Yuze Li, Taiwen Yong, Wenyu Yang. Rhizosphere flavonoids alleviate inhibition of soybean nodulation caused by shading under maize–soybean strip intercropping[J]. >Journal of Integrative Agriculture, 2026, 25(3): 952-964.
[13] Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. Critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities[J]. >Journal of Integrative Agriculture, 2026, 25(3): 965-976.
[14] Ming Li, Jingjing Wang, Jia’nan Wen, Juan J. Loor, Qianming Jiang, Jingyi Wang, Huijing Zhang, Yue Yang, Wei Yang, Bingbing Zhang, Chuang Xu. ACSL4 is a target for β-hydroxybutyrate-induced increase in fatty acid content and lipid droplet accumulation in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1137-1149.
[15] Jieyu Dai, Ze Xu, Qianjin Zhan, Jingwen Zhu, Lijun Cao, Zhanling Lu, Yuting Xu, Tongyang Kang, Yanan Hu, Caiping Zhao. Genome-wide identification of the peach LOB/LBD genes and the positive role of the PpNAP4–PpLOB1 module in peach fruit softening[J]. >Journal of Integrative Agriculture, 2026, 25(3): 977-988.
No Suggested Reading articles found!