Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Patterns and geographical drivers for the abundance of CO2-assimilating bacteria, methanotrophs and CO-oxidizing bacteria in agricultural soils across eastern China

Shengmeng Zheng1, 2, 3, Yinhang Xia2, 4, Hang Qiao2, 3Ji Liu2, 5, Fen Jia1, Miaomiao Zhang2, 3, Hongzhao Yuan2, 3, Youming Zhang6, Xunyang He2, Jinshui Wu2, 3, Yirong Su2, Xiangbi Chen2, 3#

1 Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China

2 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

3 Changsha Research Station for Agricultural & Environmental Monitoring, Chinese Academy of Sciences, Changsha, 410158, China

4 College of Resources, Hunan Agricultural University, Changsha 410128, China

5 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian 710061, China

6 State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266327, China

 Highlights 

l Spatial factors govern carbon-cycling gene abundances in uplands, whereas biotic and substrate factors dominate in paddy soils.

l Strong correlations reveal an integrated “microbial carbon pump” linking CO2, CH4, and CO cycling.

l The high continental-scale abundance of cbbL and coxL genes suggests a previously underestimated microbial role in carbon trace gas cycling.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

携带cbbLpmoAcoxL基因的微生物在调节土壤-大气间碳痕量气体(CO2CH4CO)交换方面发挥着关键作用。然而,大尺度下生态系统中这些功能基因地理分布格局及其环境驱动机制尚不晰。本研究沿中国东部四个气候带(热带、亚热带、暖温带和中温带)配对采集了稻田和旱地表层土壤样品,定量分析了CO2同化细菌(cbbL基因)、甲烷氧化菌(pmoA基因)和CO氧化细菌(coxL基因)的丰度。结果表明碳循环功能微生物分布具有显著的生态系统特异性:cbbL基因丰度旱地土壤(平均9.46×10⁹ copies g⁻¹)高于稻田土壤(平均6.44×10⁹ copies g⁻¹);与之相反,甲烷氧化菌丰度稻田(平均1.17×10⁸ copies g⁻¹)比旱地(平均5.78×10⁶ copies g⁻¹)高1~3个数量级;coxL基因丰度在两土壤水平相当(平均分别为6.12×10⁸5.91×10⁸ copies g⁻¹)。结构方程模型表明,地理位置(经纬度)决定旱地土壤cbbLpmoA基因分布的主控因子,而稻田土壤中总细菌丰度是上述三个基因的主要解释变量研究揭示了农田土壤中碳循环微生物功能群具有独特生态适应机制,为预测大尺度下农田生态系统土壤-大气间气态碳交换强度和微生物过程提供了重要科学依据



Abstract  

Microorganisms carrying cbbL, pmoA and coxL genes play crucial roles in regulating soil-atmosphere exchanges of carbon trace gases (CO2, CH4, and CO). However, the geographical distribution patterns of these functional genes in agricultural ecosystems and their environmental drivers remain poorly understood. Here, we surveyed agricultural soils across four climate zones (tropical, subtropical, warm temperate, and mid-temperate) in eastern China to quantify the abundances of CO2-assimilating bacteria (cbbL gene), methanotrophs (pmoA gene), and CO-oxidizing bacteria (coxL gene). We found significant ecosystem-specific patterns: the cbbL gene was more abundant in upland soils (averaging 9.46×109 copies g-1) than in paddy soils (6.44×109 copies g-1). In contrast, methanotrophs abundance was 1 to 3 orders of magnitude higher in paddy (averaging 1.17×108 copies g-1) than in upland (5.78×106 copies g-1) soilsThe coxL gene maintained similar abundance levels across both soil types (averaging 6.12×108 vs. 5.91×108 copies g-1). Structural equation models revealed that spatial factors primarily shaped cbbL and pmoA in uplands, whereas total bacterial abundance was the dominant predictor for all three genes in paddy soils. These results highlight distinct ecological controls on microbial functional groups and provide a predictive framework for how land use and climate change may regulate microbial mediation of carbon gas fluxes across a continental-scale transect in eastern China.

Keywords:  paddy       upland        CO2-assimilating bacteria        methanotrophs        CO-oxidizing bacteria        continental  
Online: 01 November 2025  
Fund: 

This work was financially supported by the National Key R&D Program of China (2023YFD1902802), the Science Fund for Distinguished Young Scholars in Hunan, China (2024JJ2052), the Natural Science Foundation of Fujian Province, China (2022J05263), the Nanping City Science and Technology Plan Project, China (NP2021KTS02), the Talent Introduction Project of Wuyi University, China (YJ202117), and the Open Foundation of State Key Laboratory of Microbial Technology in Shandong University, China (M2022-05).

About author:  Shengmeng Zheng, email: shengmz0712@163.com; #Correspondence Xiangbi Chen, E-mail: xbchen@isa.ac.cn

Cite this article: 

Shengmeng Zheng, Yinhang Xia, Hang Qiao, Ji Liu, Fen Jia, Miaomiao Zhang, Hongzhao Yuan, Youming Zhang, Xunyang He, Jinshui Wu, Yirong Su, Xiangbi Chen. 2025. Patterns and geographical drivers for the abundance of CO2-assimilating bacteria, methanotrophs and CO-oxidizing bacteria in agricultural soils across eastern China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.020

Bao S D. 2000. Soil and Agricultural Chemistry Analysis. 3rd ed. Chinese Agriculture Press, Beijing, China. (in Chinese)

Bay S K, Dong X, Bradley J A, Leung P M, Grinter R, Jirapanjawat T, Arndt S K, Leung P M, Cook P L M, Grinter R, LaRowe D E, Nauer P A, Chiri E, Greening C. 2021. Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology6, 246-256.

Breiman L. 2001. Random forests. Machine Learning, 45, 5-32

Bremner J M, Mulvaney C S. 1982. Nitrogen-total. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis, Part 2, Chemical and Microbial Properties. Agronomy Society of America, Madison. pp. 595-624.

Bridgham S D, Cadillo-Quiroz H, Keller J K, Zhuang Q L. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325-1346.

Chen X B, Hu Y J, Xia Y H, Zheng S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang H Z, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su, Y R. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 27, 2478-2490.

Cordero P R F, Bayly K, Man L P, Huang C, Islam Z F, Schittenhelm R B, King G M, Greening C. 2019. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. The ISME Journal, 13, 2868-2881.

Crowther T W, van den Hoogen J, Wan J, Mayes M A, Keiser A D, Mo L, Averill C, Maynard D S. 2019. The global soil community and its influence on biogeochemistry. Science, 365, eaav0550.

Crowther T W, Todd-Brown K E O, Rowe C W, Wieder W R, Carey J C, Machmuller M B, Snoek B L, Fang S, Zhou G, Allison S D, Blair J M, Bridgham S D, Burton A J, Carrillo Y, Reich P B, Clark J S, Classen A T, Dijkstra F A, Elberling B, Emmett B A, et al2016. Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108.

Delgado-Baquerizo M, Maestre F T, Reich P B, Jeffries T C, Gaitan J J, Encinar D, Berdugo M, Campbell C D, Singh B K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.

Dlugokencky E J, Nisbet E G, Fisher R, Lowryet D. 2011. Global atmospheric methane: Budget, changes and dangers. Philosophical Transactions of the Royal Society A (Mathematical, Physical and Engineering Sciences), 369, 2058-2072.

Eller G, Frenzel P. 2001. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Applied Environmental Microbiology, 67, 2395-2403.

Fan L C, Schneider D, Dippold M A, Poehlein Anja, Wu W C, Gui H, Ge T D, Wu J S, Thiel V, Kuzvakoy Y, Dorodnikoy M. 2021. Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biology and Biochemistry, 156, 108215

Grace J B. 2006. Structural Equation Modeling and Natural Systems. Cambridge University Press, UK.

Greening C, Grinter R. 2022. Microbial oxidation of atmospheric trace gases. Nature Reviews Microbiology, 20, 513-528.

Guo G X, Kong W D, Liu J B, Zhao J X, Du H D, Zhang X Z, Xia, P H. 2015. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Applied Microbiology and Biotechnology, 99, 8765-76.

Hooper D, Coughlan J, Mullen M R. 2008. Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6, 53-60.

Jiao S, Yang Y F, Xu Y Q, Zhang J, Lu Y H. 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal, 14, 202-216.

King G M. 2003. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Applied and Environmental Microbiology, 69, 7257-7265.

King G M, Crosby H. 2002. Impacts of plant roots on soil CO cycling and soil-atmosphere CO exchange. Global Change Biology, 8, 1085-1093.

King G M, Weber C F. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nature Reviews Microbiology, 5, 107-118.

Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontier in Microbiology, 6, 1-38.

Kolb S, Knief C, Stubner S, Conrad R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69, 2423-2429.

Lafuente A, Bowker M A, Delgado-Baquerizo M, Durán J, Singh B K, Maestre F T. 2019. Global drivers of methane oxidation and denitrifying gene distribution in drylands. Global Ecology and Biogeography, 28, 1230-1243.

Leung P M, Grinter R, Tudor-Matthew E, Lingford J P, Jimenez L, Lee H C, Milton M, Hanchapola I, Tanuwidjaya E, Kropp A, Peach H A, Carere R C, Stott M B, Schittenhelm R B, Greening C. 2024. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nature Communications15, 3219.

Li L, Kuzyakov Y, Xu Q, Guo H, Zhu C, Guo J, Guo S, Shen Q, Ling N. 2024. Bacterial communities in cropland soils: Taxonomy and functions. Plant and Soil497, 297-315.

Liao H, Hao X J, Qin F, Delgado-Baquerizo M, Liu Y R, Zhou J Z, Cai P, Chen W L, Huang Q Y. 2023. Microbial autotrophy explains large-scale soil CO2 fixation. Global Change Biology, 29, 231-242.

Liaw A, Wiener M. 2002. Classification and regression by random forest. R News, 2, 18-22. 

Liu J, Qiu T Y, Peñuelas J, Sardans J, Tan W F, Wei X M, Cui Y X, Cui Q L, Wu C F, Liu L F, Zhou B T, He H R, Fang L C. 2023. Crop residue return sustains global soil ecological stoichiometry balance. Global Change Biology, 29, 2203-2226.

López-Gutiérrez J C, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. 2004. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of Microbiological Methods, 57, 399-407.

Maestre F T, Delgado-Baquerizo M, Jeffries T C, Eldridge D J, Ochoa V, Gozalo B, Quero J L, García-Gómez M, Gallardo A, Ulrich W, Bowker M A, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez J R, Huber-Sannwald E, Jankju M, Mau R L, et al2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.

Martiny J B H, Bohannan B J M, Brown J H, Colwell R K, Fuhrman J A, Green J L, Horner-Devine M C, Kane M, Krumins J A, Kuske C R, Morin P J, Naeem S, Øvreås L, Reysenbach A L, Smith V H, Staley J T. 2006. Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology4, 102-112.

Nazaries L, Karunaratne S B, Delgado-Baquerizo M, Campbell C D, Singh B K. 2018. Environmental drivers of the geographical distribution of methanotrophs: Insights from a national survey. Soil Biology and Biochemistry, 127, 264-279.

Nelson R E, Sommers L E, 1982. Total carbon, organic carbon and organic matter. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. 2nd ed. Agronomy No: 9, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. pp. 539-580.

Ortiz M, Leung P M, Shelley G, Jirapanjawat T, Nauer P A, Van Goethem M W, Bay S K, Islam Z F, Jordaan K, Vikram S, Chown S L, Hogg I D, Makhalanyane T P, Grinter R, Cowan D A, Greening C. 2021. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proceedings of the National Academy of Sciencesof the United States of America118, e2025322118.

Quiza L, Lalonde I, Guertin C, Constant P. 2014. Land-use influences the distribution and activity of high affinity CO-oxidizing bacteria associated to type I-coxL genotype in soil. Frontiers in Microbiology, 5, 271.

Reeve J R, Schadt C W, Carpenter-Boggs L, Kang S, Zhou J, Reganold J P. 2010. Effects of soil type and farm management on soil ecological functional genes and microbial activities. The ISME Journal, 4, 1099-1107.

Singh B K, Bardgett R D, Smith P, Reay D S. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779-790.

Tian K, Zhao Y C, Xu X H, Hai N, Huang B, Deng W J. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture Ecosystems & Environment, 204, 40-50.

Tolli J, King G M. 2005. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Applied and Environmental Microbiology, 71, 8411-8418.

Trivedi P, Anderson I C, Singh B K. 2013. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21, 641-651.

Tveit A T, Hestnes A G, Robinson S L, Schintlmeister A, Dedysh S N, Jehmlich N, von Bergen M, Herbold C, Wagner M, Richter A, Svenning M M. 2019. Widespread soil bacterium that oxidizes atmospheric methane. Proceedings of the National Academy of Sciences of the United States of America, 116, 8515-8524.

Weber C F, King G M. 2010. Quantification of Burkholderia coxL genes in Hawaiian volcanic deposits. Applied and Environmental Microbiology, 76, 2212-2217.

Whalen S C, Reeburgh W S. 2001. Carbon monoxide consumption in upland boreal forest soils. Soil Biology and Biochemistry, 33, 1329-1338.

Wu J S, Joergensen R G, Pommerening B, Chaussod R, Brookes B C. 1990. Measurement of soil microbial biomass by fumigation-extraction-An automated procedure, Soil Biology and Biochemistry, 22, 1167-1169.

Wu X H, Ge T D, Hu Y J, Wei X M, Chen L, Whiteley A S, Wu J S. 2017a. Abundance and diversity of carbon monoxide dehydrogenase genes from BMS Glade bacteria in different vegetated soils. European Journal of Soil Biology, 81, 94-99.

Wu X H, Ge T D, Yan W D, Zhou J, Wei X M, Chen L, Chen X B, Nannipieri P, Wu J S. 2017b. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil. FEMS Microbiology Ecology, 93, 1-10.

Xia Y H, Chen X B, Hu Y J, Zheng S M, Ning Z, Guggenberger G, He H B, Wu J S, Su Y R. 2019. Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China. Biology and Fertility of Soils, 55, 767-776.

Xiao K Q, Bao P, Bao Q L, Jia Y, Huang F Y, Su J Q, Zhu Y G. 2014. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiology Ecology, 87, 89-101.

Xiong J B, Liu Y Q, Lin X G, Zhang H Y, Zeng J, Hou J Z, Yang Y P, Yao T D, Knight R, Chu H Y. 2012. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466.

Xu C M, Xao D S, Chen S, Guang C, Liu H, Zhang X F, Wang D Y. 2023, Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions. Journal of Integrative Agriculture, 22, 923-934.

Xu Y F, Teng Y, Dai S X, Liao J, Wang X, Hu W B, Guo Z Y, Pan X Z, Dong X Y, Luo Y. 2024. Atmospheric trace gas oxidizers contribute to soil carbon fixation driven by key soil conditions in terrestrial ecosystems. Environmental Science & Technology58, 21617-21628.

Yuan H Z, Ge T D, Chen C Y, O'Donnell A G, Wu J S. 2012. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 78, 2328-2336.

Yuan H Z, Ge T D, Chen X B, Liu S L, Zhu Z K, Wu X H, Wei W X, Whiteley A S, Wu J S. 2015. Abundance and diversity of CO2-assimilating bacteria and algae within red agricultural soils are modulated by changing management practice. Microbial Ecology, 70, 971-980.

Yuan H Z, Ge T D, Zou S Y, Wu X H, Liu S L, Zhou P, Chen X J, Brookes P, Wu J S2013. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils. Biology and Fertility of Soils, 49, 609-616.

Zhao J, Cai Y F, Jia Z J. 2020 The pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences, 17, 1451-1462.

Zheng S M, Deng S H, Ma C, Xia Y H, Qiao H, Zhao J, Gao W, Tu Q, Zhang Y M, Rui Y C, Wu J S, Su Y R, Chen X B. 2024. Type I methanotrophs dominated methane oxidation and assimilation in rice paddy fields by the consequence of niche differentiation, Biology and Fertility of Soils60, 153-165.

Zheng S M, Xia Y H, Hu Y J, Chen X B, Rui Y C, Gunina A, He X Y, Ge T D, Wu J S, Su Y, Kuzyakov Y. 2021. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research209, 104903.

[1] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
[2] Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3159-3173.
[3] Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2848-2864.
[4] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[5] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[6] ZHOU Yong, YAN Xiao-yuan, GONG Song-ling, LI Cheng-wei, ZHU Rong, ZHU Bo, LIU Zhang-yong, WANG Xiao-long, CAO Peng. Changes in paddy cropping system enhanced economic profit and ecological sustainability in central China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 566-577.
[7] LI Bao-zhen, Anna GUNINA, Mostafa ZHRAN, Davey L. JONES, Paul W. HILL, HU Ya-jun, GE Ti-da, WU Jin-shui. Fate of low-molecular-weight organic phosphorus compounds in the P-rich and P-poor paddy soils[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2526-2534.
[8] GUO Xiao-hong*, LAN Yu-chen*, XU Ling-qi, YIN Da-wei, LI Hong-yu, QIAN Yong-de, ZHENG Gui-ping, LÜ Yan-dong. Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields[J]. >Journal of Integrative Agriculture, 2021, 20(2): 540-553.
[9] ZHANG Jun-hua, HUANG Jing, Sajid HUSSAIN, ZHU Lian-feng, CAO Xiao-chuang, ZHU Chun-quan, JIN Qian-yu, ZHANG Hui. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
[10] HUANG Wan, WU Jian-fu, PAN Xiao-hua, TAN Xue-ming, ZENG Yong-jun, SHI Qing-hua, LIU Tao-ju, ZENG Yan-hua. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China[J]. >Journal of Integrative Agriculture, 2021, 20(1): 236-247.
[11] LUO Chong, LIU Huan-jun, FU Qiang, GUAN Hai-xiang, YE Qiang, ZHANG Xin-le, KONG Fan-chang. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1885-1896.
[12] ZHANG Ya-jie, XU Jing-nan, CHENG Ya-dan, WANG Chen, LIU Gao-sheng, YANG Jian-chang. The effects of water and nitrogen on the roots and yield of upland and paddy rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1363-1374.
[13] YUAN Hong-zhao, ZHU Zhen-ke, WEI Xiao-meng, LIU Shou-long, PENG Pei-qin, Anna Gunina, SHEN Jian-lin, Yakov Kuzyakov, GE Ti-da, WU Jin-shui, WANG Jiu-rong. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1474-1485.
[14] GAO Song-juan, GAO Ju-sheng, CAO Wei-dong, ZOU Chun-qin, HUANG Jing, BAI Jin-shun, DOU Fu-gen. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1852-1860.
[15] LU Zhong-jun, SONG Qian, LIU Ke-bao, WU Wen-bin, LIU Yan-xia, XIN Rui, ZHANG Dong-mei . Rice cultivation changes and its relationships with geographical factors in Heilongjiang Province, China[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2274-2282.
No Suggested Reading articles found!