|
Bao S D. 2000. Soil and Agricultural Chemistry Analysis. 3rd ed. Chinese Agriculture Press, Beijing, China. (in Chinese)
Bay S K, Dong X, Bradley J A, Leung P M, Grinter R, Jirapanjawat T, Arndt S K, Leung P M, Cook P L M, Grinter R, LaRowe D E, Nauer P A, Chiri E, Greening C. 2021. Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology, 6, 246-256.
Breiman L. 2001. Random forests. Machine Learning, 45, 5-32
Bremner J M, Mulvaney C S. 1982. Nitrogen-total. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis, Part 2, Chemical and Microbial Properties. Agronomy Society of America, Madison. pp. 595-624.
Bridgham S D, Cadillo-Quiroz H, Keller J K, Zhuang Q L. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325-1346.
Chen X B, Hu Y J, Xia Y H, Zheng S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang H Z, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su, Y R. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 27, 2478-2490.
Cordero P R F, Bayly K, Man L P, Huang C, Islam Z F, Schittenhelm R B, King G M, Greening C. 2019. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. The ISME Journal, 13, 2868-2881.
Crowther T W, van den Hoogen J, Wan J, Mayes M A, Keiser A D, Mo L, Averill C, Maynard D S. 2019. The global soil community and its influence on biogeochemistry. Science, 365, eaav0550.
Crowther T W, Todd-Brown K E O, Rowe C W, Wieder W R, Carey J C, Machmuller M B, Snoek B L, Fang S, Zhou G, Allison S D, Blair J M, Bridgham S D, Burton A J, Carrillo Y, Reich P B, Clark J S, Classen A T, Dijkstra F A, Elberling B, Emmett B A, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108.
Delgado-Baquerizo M, Maestre F T, Reich P B, Jeffries T C, Gaitan J J, Encinar D, Berdugo M, Campbell C D, Singh B K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
Dlugokencky E J, Nisbet E G, Fisher R, Lowryet D. 2011. Global atmospheric methane: Budget, changes and dangers. Philosophical Transactions of the Royal Society A (Mathematical, Physical and Engineering Sciences), 369, 2058-2072.
Eller G, Frenzel P. 2001. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Applied Environmental Microbiology, 67, 2395-2403.
Fan L C, Schneider D, Dippold M A, Poehlein Anja, Wu W C, Gui H, Ge T D, Wu J S, Thiel V, Kuzvakoy Y, Dorodnikoy M. 2021. Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biology and Biochemistry, 156, 108215
Grace J B. 2006. Structural Equation Modeling and Natural Systems. Cambridge University Press, UK.
Greening C, Grinter R. 2022. Microbial oxidation of atmospheric trace gases. Nature Reviews Microbiology, 20, 513-528.
Guo G X, Kong W D, Liu J B, Zhao J X, Du H D, Zhang X Z, Xia, P H. 2015. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Applied Microbiology and Biotechnology, 99, 8765-76.
Hooper D, Coughlan J, Mullen M R. 2008. Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6, 53-60.
Jiao S, Yang Y F, Xu Y Q, Zhang J, Lu Y H. 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal, 14, 202-216.
King G M. 2003. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Applied and Environmental Microbiology, 69, 7257-7265.
King G M, Crosby H. 2002. Impacts of plant roots on soil CO cycling and soil-atmosphere CO exchange. Global Change Biology, 8, 1085-1093.
King G M, Weber C F. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nature Reviews Microbiology, 5, 107-118.
Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontier in Microbiology, 6, 1-38.
Kolb S, Knief C, Stubner S, Conrad R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69, 2423-2429.
Lafuente A, Bowker M A, Delgado-Baquerizo M, Durán J, Singh B K, Maestre F T. 2019. Global drivers of methane oxidation and denitrifying gene distribution in drylands. Global Ecology and Biogeography, 28, 1230-1243.
Leung P M, Grinter R, Tudor-Matthew E, Lingford J P, Jimenez L, Lee H C, Milton M, Hanchapola I, Tanuwidjaya E, Kropp A, Peach H A, Carere R C, Stott M B, Schittenhelm R B, Greening C. 2024. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nature Communications, 15, 3219.
Li L, Kuzyakov Y, Xu Q, Guo H, Zhu C, Guo J, Guo S, Shen Q, Ling N. 2024. Bacterial communities in cropland soils: Taxonomy and functions. Plant and Soil, 497, 297-315.
Liao H, Hao X J, Qin F, Delgado-Baquerizo M, Liu Y R, Zhou J Z, Cai P, Chen W L, Huang Q Y. 2023. Microbial autotrophy explains large-scale soil CO2 fixation. Global Change Biology, 29, 231-242.
Liaw A, Wiener M. 2002. Classification and regression by random forest. R News, 2, 18-22.
Liu J, Qiu T Y, Peñuelas J, Sardans J, Tan W F, Wei X M, Cui Y X, Cui Q L, Wu C F, Liu L F, Zhou B T, He H R, Fang L C. 2023. Crop residue return sustains global soil ecological stoichiometry balance. Global Change Biology, 29, 2203-2226.
López-Gutiérrez J C, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. 2004. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of Microbiological Methods, 57, 399-407.
Maestre F T, Delgado-Baquerizo M, Jeffries T C, Eldridge D J, Ochoa V, Gozalo B, Quero J L, García-Gómez M, Gallardo A, Ulrich W, Bowker M A, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez J R, Huber-Sannwald E, Jankju M, Mau R L, et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.
Martiny J B H, Bohannan B J M, Brown J H, Colwell R K, Fuhrman J A, Green J L, Horner-Devine M C, Kane M, Krumins J A, Kuske C R, Morin P J, Naeem S, Øvreås L, Reysenbach A L, Smith V H, Staley J T. 2006. Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4, 102-112.
Nazaries L, Karunaratne S B, Delgado-Baquerizo M, Campbell C D, Singh B K. 2018. Environmental drivers of the geographical distribution of methanotrophs: Insights from a national survey. Soil Biology and Biochemistry, 127, 264-279.
Nelson R E, Sommers L E, 1982. Total carbon, organic carbon and organic matter. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. 2nd ed. Agronomy No: 9, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. pp. 539-580.
Ortiz M, Leung P M, Shelley G, Jirapanjawat T, Nauer P A, Van Goethem M W, Bay S K, Islam Z F, Jordaan K, Vikram S, Chown S L, Hogg I D, Makhalanyane T P, Grinter R, Cowan D A, Greening C. 2021. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proceedings of the National Academy of Sciencesof the United States of America, 118, e2025322118.
Quiza L, Lalonde I, Guertin C, Constant P. 2014. Land-use influences the distribution and activity of high affinity CO-oxidizing bacteria associated to type I-coxL genotype in soil. Frontiers in Microbiology, 5, 271.
Reeve J R, Schadt C W, Carpenter-Boggs L, Kang S, Zhou J, Reganold J P. 2010. Effects of soil type and farm management on soil ecological functional genes and microbial activities. The ISME Journal, 4, 1099-1107.
Singh B K, Bardgett R D, Smith P, Reay D S. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779-790.
Tian K, Zhao Y C, Xu X H, Hai N, Huang B, Deng W J. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture Ecosystems & Environment, 204, 40-50.
Tolli J, King G M. 2005. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Applied and Environmental Microbiology, 71, 8411-8418.
Trivedi P, Anderson I C, Singh B K. 2013. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21, 641-651.
Tveit A T, Hestnes A G, Robinson S L, Schintlmeister A, Dedysh S N, Jehmlich N, von Bergen M, Herbold C, Wagner M, Richter A, Svenning M M. 2019. Widespread soil bacterium that oxidizes atmospheric methane. Proceedings of the National Academy of Sciences of the United States of America, 116, 8515-8524.
Weber C F, King G M. 2010. Quantification of Burkholderia coxL genes in Hawaiian volcanic deposits. Applied and Environmental Microbiology, 76, 2212-2217.
Whalen S C, Reeburgh W S. 2001. Carbon monoxide consumption in upland boreal forest soils. Soil Biology and Biochemistry, 33, 1329-1338.
Wu J S, Joergensen R G, Pommerening B, Chaussod R, Brookes B C. 1990. Measurement of soil microbial biomass by fumigation-extraction-An automated procedure, Soil Biology and Biochemistry, 22, 1167-1169.
Wu X H, Ge T D, Hu Y J, Wei X M, Chen L, Whiteley A S, Wu J S. 2017a. Abundance and diversity of carbon monoxide dehydrogenase genes from BMS Glade bacteria in different vegetated soils. European Journal of Soil Biology, 81, 94-99.
Wu X H, Ge T D, Yan W D, Zhou J, Wei X M, Chen L, Chen X B, Nannipieri P, Wu J S. 2017b. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil. FEMS Microbiology Ecology, 93, 1-10.
Xia Y H, Chen X B, Hu Y J, Zheng S M, Ning Z, Guggenberger G, He H B, Wu J S, Su Y R. 2019. Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China. Biology and Fertility of Soils, 55, 767-776.
Xiao K Q, Bao P, Bao Q L, Jia Y, Huang F Y, Su J Q, Zhu Y G. 2014. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiology Ecology, 87, 89-101.
Xiong J B, Liu Y Q, Lin X G, Zhang H Y, Zeng J, Hou J Z, Yang Y P, Yao T D, Knight R, Chu H Y. 2012. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466.
Xu C M, Xao D S, Chen S, Guang C, Liu Y H, Zhang X F, Wang D Y. 2023, Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions. Journal of Integrative Agriculture, 22, 923-934.
Xu Y F, Teng Y, Dai S X, Liao J, Wang X, Hu W B, Guo Z Y, Pan X Z, Dong X Y, Luo Y. 2024. Atmospheric trace gas oxidizers contribute to soil carbon fixation driven by key soil conditions in terrestrial ecosystems. Environmental Science & Technology, 58, 21617-21628.
Yuan H Z, Ge T D, Chen C Y, O'Donnell A G, Wu J S. 2012. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 78, 2328-2336.
Yuan H Z, Ge T D, Chen X B, Liu S L, Zhu Z K, Wu X H, Wei W X, Whiteley A S, Wu J S. 2015. Abundance and diversity of CO2-assimilating bacteria and algae within red agricultural soils are modulated by changing management practice. Microbial Ecology, 70, 971-980.
Yuan H Z, Ge T D, Zou S Y, Wu X H, Liu S L, Zhou P, Chen X J, Brookes P, Wu J S. 2013. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils. Biology and Fertility of Soils, 49, 609-616.
Zhao J, Cai Y F, Jia Z J. 2020 The pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences, 17, 1451-1462.
Zheng S M, Deng S H, Ma C, Xia Y H, Qiao H, Zhao J, Gao W, Tu Q, Zhang Y M, Rui Y C, Wu J S, Su Y R, Chen X B. 2024. Type I methanotrophs dominated methane oxidation and assimilation in rice paddy fields by the consequence of niche differentiation, Biology and Fertility of Soils, 60, 153-165.
Zheng S M, Xia Y H, Hu Y J, Chen X B, Rui Y C, Gunina A, He X Y, Ge T D, Wu J S, Su Y, Kuzyakov Y. 2021. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 209, 104903.
|