Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2848-2864    DOI: 10.1016/j.jia.2022.12.006
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system

Nafiu Garba HAYATU1, 2, 3*, LIU Yi-ren2*, HAN Tian-fu1, Nano Alemu DABA1, ZHANG Lu1, SHEN Zhe1, LI Ji-wen1, Haliru MUAZU3, Sobhi Faid LAMLOM4, ZHANG Hui-min1#

1 National Engineering Laboratory for Improving Quality of Arable Land/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

2 Soil and Fertilizer & Resource and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P.R.China

3 Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto 2346, Nigeria

4 Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield, soil carbon storage, and nutrient use efficiency.  However, how the long-term substitution of chemical fertilizer with organic manure affects rice yield, carbon sequestration rate (CSR), and nitrogen use efficiency (NUE) while ensuring environmental safety remains unclear.  This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield, CSR, and NUE.  It also determined the optimum substitution ratio in the acidic soil of southern China.  The treatments were: (i) NPK0, unfertilized control; (ii) NPK1, 100% chemical nitrogen, phosphorus, and potassium fertilizer; (iii) NPKM1, 70% chemical NPK fertilizer and 30% organic manure; (iv) NPKM2, 50% chemical NPK fertilizer and 50% organic manure; and (v) NPKM3, 30% chemical NPK fertilizer and 70% organic manure.  Milk vetch and pig manure were sources of manure for early and late rice seasons, respectively.  The result showed that SOC content was higher in NPKM1, NPKM2, and NPKM3 treatments than in NPK0 and NPK1 treatments.  The carbon sequestration rate increased by 140, 160, and 280% under NPKM1, NPKM2, and NPKM3 treatments, respectively, compared to NPK1 treatment.  Grain yield was 86.1, 93.1, 93.6, and 96.5% higher under NPK1, NPKM1, NPKM2, and NPKM3 treatments, respectively, compared to NPK0 treatment.  The NUE in NPKM1, NPKM2, and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.  Redundancy analysis revealed close positive relationships of CSR with C input, total N, soil C:N ratio, catalase, and humic acids, whereas NUE was closely related to grain yield, grain N content, and phenol oxidase.  Furthermore, CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.  The technique for order of preference by similarity to ideal solution (TOPSIS) showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.  Therefore, substituting 70% of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China

Keywords:  carbon sequestration        chemical fertilizer        long term        organic manure        nitrogen use efficiency        paddy rice  
Received: 28 September 2022   Accepted: 29 October 2022
Fund: 

This study was supported by the National Natural Science Foundation of China (41671301), the National Key Research and Development Program of China (2016YFD0300901), and the Central Public-interest Scientific Institution Basal Research Fund (GY2022-13-5; G2022-02-2; G2022-02-3 and G2022-02-10).

About author:  Nafiu Garba HAYATU, E-mail: nafiu.hayatu@udusok.edu.ng; LIU Yi-ren, E-mail: jxnclyr@163.com; #Correspondence ZHANG Hui-min, E-mail: zhanghuimin@caas.cn * These authors contributed equally to this study.

Cite this article: 

Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. 2023. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system. Journal of Integrative Agriculture, 22(9): 2848-2864.

Abbruzzini T F, Davies C A, Toledo F H, Cerri C E P. 2019. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. Journal of Environmental Management252, 109638.

Abdullahi A A, Hayatu N, Yusuf A A, Audu M, Noma S S. 2011. Response of two cowpea varieties to Sokoto rock phosphate in western Nigeria. Journal of Agriculture and Environment7, 95–103.

Abrar M M, Xu H, Aziz T, Sun N, Mustafa A, Aslam M W, Shah S A A, Mehmood K, Zhou B K, Ma X Z, Chen X N, Xu M G. 2021. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisols after long-term fertilization in Northeast China. Journal of Soils and Sediments21, 705–723.

Adnan M, Xu M G, Syeh A A S, Muhammad M A, Sun N, Wang B R, Cai Z J, Qudsia S, Muhammad N, Khalid M, Avelino N D. 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management270, 110894.

Ai C, Liang G, Sun J, Wang X, Zhou W. 2012. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma173, 330–338.

Anantha K C, Majumder S P, Padhan D, Badole S, Datta A, Mandal B, Gade K R. 2018. Carbon dynamics, potential and cost of carbon sequestration in double rice cropping system in semi-arid southern India. Journal of Soil Science and Plant Nutrition18, 418–434.

Babhulkar P S, Wandile R M, Bandole W B, Balpande S S. 2000. Residual effect of long-term application of FYM and fertilizers on soil properties (Vertisols) and yield of soybean. Journal of the Indian Society of Soil Science48, 89–92.

Bai Z G, Caspari T, Gonzalez M R, Batjes N H, Mader P, Bünemann E K, Goede R, Brussaard L, Xu M, Ferreira C S S, Reintam E, Fan H Z, Miheličh R, Glavan M, Tóth Z. 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. AgricultureEcosystems & Environment265, 1–7.

Bhardwaj A K, Rajwar D, Mandal U K, Ahamad S, Kaphaliya B, Minhas P S, Prabhakar M, Banyal R, Singh R, Chaudhari S K, Sharma P C. 2019. Impact of carbon inputs on soil carbon fractionation, sequestration and biological responses under major nutrient management practices for rice–wheat cropping systems. Scientific Reports9, 9114.

Bhattacharyya R, Kundu S, Prakash V, Gupta H S. 2008. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean–wheat system of the Indian Himalayas. European Journal of Agronomy28, 33–46.

Bi L, Zhang B, Liu G, Li Z, Liu Y, Ye C, Yu X, Lai T, Zhang J, Yin J, Liang Y. 2009. Long-term efects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agriculture, Ecosystem and Environment129, 534–541.

Bremner J M. 1997. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosytems49, 7–16.

Cai A, Xu M, Wang B, Zhang W, Liang G, Hou E, Luo Y. 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil & Tillage Research189, 168–175.

Cai Z, Wang B, Xu M, Zhang H, He X, Zhang L, Gao S. 2015. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments15, 260–270.

Cai Z C, Tsuruta H, Gao M, Xu H, Wei C F. 2003. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology9, 37–45.

Cardenas L M, Bhogal A, Chadwick D R, McGeough K, Misselbrook T, Rees R M, Thorman R E, Watson C J, Williams J R, Smith K A, Calvet S. 2019. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Science of the Total Environment661, 696–710.

Chen D, Yuan L, Liu Y, Ji J, Hou H. 2017. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. European Journal of Agronomy90, 34–42.

Chen S, Zhang X, Shao L, Sun H, Niu J, Liu X. 2020. Effects of straw and manure management on soil and crop performance in North China Plain. Catena187, 104359.

Doran J W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal44, 765–771.

Eastman B A, Adams M B, Peterjohn W T. 2022. The path less taken: Long-term N additions slow leaf litter decomposition and favor the physical transfer pathway of soil organic matter formation. Soil Biology and Biochemistry, 166, 108567.

El-Sorady G A, El-Banna A A A, Abdelghany A M, Salama E A A, Ali H M, Siddiqui M H, Hayatu N G, Paszt L S, Lamlom S F. 2022. Response of bread wheat cultivars inoculated with Azotobacter Species under different nitrogen application rates. Sustainability14, 8394.

European Union Nitrogen Expert Panel. 2015. Nitrogen Use Efficiency (NUE) - an indicator for the utilization of nitrogen in agriculture and food systems. Wageningen University, Alterra, Netherlands.

Faithfull N T. 2002. Methods in Agricultural Chemical AnalysisA Practical Handbook. Commonwealth Agricultural Bureaux International Publishing, Wallingford, United Kingdom. pp. 57–104.

Fan L, Dippold M A, Ge T, Wu J, Thiel V, Kuzyakov Y, Dorodnikov M. 2020. Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biology and Biochemistry, 141, 107685.

Fan T L, Xu M G, Song S Y, Zhou G Y, Ding L P. 2008. Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Journal of Plant Nutrition and Soil Science171, 448–457.

Frey S D, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell B A, Crow S, Goodale C L, Grandy A S, Finzi A, Kramer M G, Lajtha K, LeMoine J, Martin M, McDowell W H, Minocha R, Sadowsky J J, Templer P H, Wickings K. 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry121, 305–316.

García-Ruiz R, Ochoa V, Hinojosa M B, Carreira J A. 2008. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry40, 2137–2145.

Gogoi B, Borah N, Baishya A, Dutta S, Nath D J, Das R, Bhattacharryya D, Sharma K K, Mishra G, Francaviglia R. 2021. Yield trends, soil carbon fractions and sequestration in a rice–rice system of North-East India: Effect of 32 years of INM practices. Field Crops Research, 272, 108289.

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. 2010. Significant acidification in major Chinese croplands. Science327, 1008–1010.

Hayatu N G, Abdulwahab M O, Haruna F D, Anka A B, Jabbi F F, Bai Y J, Darma A I, Dahiru S, Shawai R S. 2020a. Impact of different land use types on some selected soil physical and chemical properties of soils in Kware local government area, Sokoto State, Nigeria. FUDMA Journal of Agriculture and Agricultural Technology6, 1–14.

Hayatu N G, Noma S S, Nabayi A, Abdelsatter M M, Haruna F D, Amadou A, Sani I, Sharu M B, Anka A B, Abubakar S D. 2020b. Characterization and classification of soils on grazing lands in Kwallatawa village, Sokoto State, Nigeria. SVU-International Journal of Agricultural Science, 2, 326–338.

Hayatu N G, Samuel C D, Sale A, Abdullahi I L, Sharu M B, Buji I, Nabayi A, Haruna F D, Sharif R M. 2018. Effect of land use systems on selected chemical properties of soils in Gidan Sule, Wamakko, Sokoto State, Nigeria. International Journal of Research and Scientific Innovation3, 19–23.

Hijbeek R, van Ittersum M K, ten Berge H F M, Gort G, Spiegel H, Whitmore A P. 2017. Do organic inputs matter a meta-analysis of additional yield effects for arable crops in Europe. Plant and Soil411, 293–303.

Hoffmann G G, Teicher K. 1961. A colorimetric technique for determining urease activity in soil. Dung Bodenkunde95, 55–63. (in German)

Huang J, Zhang Y Z, Gao J S, Zhang W J, Liu S J. 2015. Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil. Chinese Journal of Applied Ecology26, 3373–3380. (in Chinese)

Huang J, Zhou L, Liu S, Han T, Hayatu N G, Li D, Zhang S, Wang B, Zhang H. 2021. Vertical distribution of phosphorus fractions and the environmental critical phosphorus level in acidic red soil under long-term fertilizer and lime application in southern China. Journal of Plant Nutrition and Soil Science184, 585–595.

Huang W, Hall S J. 2017. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nature Communications, 8, 1774.

Janssens I A, Dieleman W, Luyssaert S, Subke J, Reichstein M, Ceulemans R, Ciais P, Dolman A J, Grace J, Matteucci G, Papale D, Piao S L, Schulze E D, Tang J, Law B E. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315–322.

Jiang B S, Shen J L, Sun M H, Hu Y J, Jiang W Q, Wang J, Li Y, Wu J S. 2021. Paddy soil phosphorus availability and rice phosphorus uptake under various agronomic practices. Pedosphere31, 103–115.

Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food and Energy Security9, 1–13.

Johnson J I, Temple K L. 1964. Some variables affecting the measurements of “catalase activity” in soil. Soil Science Society of America Journal28, 207–209.

Kong A Y Y, Six J, Bryant D C, Denison R F, Kessel C V. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal69, 1078–1085.

Kundu S, Bhattacharyya R, Prakash V, Ghosh B N, Gupta H S. 2007. Carbon sequestration and relationship between carbon addition and storage under rain fed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil & Tillage Research92, 87–95.

Ladd J N, Brisbane P G, Butler J H A, Amato M. 1976. Studies on soil fumigation. III. Effects on enzyme activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biology and Biochemistry8, 255–260.

Lai Y J, Hwang C L. 1994. Fuzzy multiple objective decision making. In: Fuzzy Multiple Objective Decision Making. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, Heidelberg. pp. 139–262.

Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma123, 1–22.

Lal R. 2010. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience60, 708–721.

Lehmann J, Kinyangi J, Solomon D. 2007. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry85, 45–57.

Li C, Xiong Y, Huang Q, Xu X, Huang G. 2020. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. Journal of Cleaner Production259, 1–15.

Liang C, Schimel J D, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.

Liang Y, Al-Kaisi M, Yuan J, Liu J, Zhang H, Wang L, Cai H, Ren J. 2021. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agriculture Ecosystems & Environment, 314, 107403.

Liu J, Jiang B, Shen J, Zhu X, Yi W, Li Y, Wu J. 2021. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agriculture Ecosystems & Environment311, 107286.

Liu J, Ouyang X, Shen J, Li Y, Sun W, Jiang W, Wu J. 2020. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment715, 136852.

Liu Y, Hou H, Ji J, Lv Z, Liu X, Liu G, Li Z. 2019. Long-term fertiliser (organic and inorganic) input effects on soil microbiological characteristics in hydromorphic paddy soils in China. Soil Research57, 459–466.

Liu Y R, Li X, Shen Q R, Xu Y C. 2013. Enzyme activity in water-stable soil aggregates as affected by long-term application of organic manure and chemical fertilizer. Pedosphere23, 111–119.

Malhi S S, Nyborg M, Solberg E D, McConkey B, Dyck M, Puurveen D. 2011. Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biology and Fertility of Soils47, 785–800.

McDaniel M D, Tiemann L K, Grandy A S. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications24, 560–570.

Meyer N A, Breecker D O, Young M H, Litvak M E. 2014. Simulating the effect of vegetation in formation of pedogenic carbonate. Soil Science Society of America Journal78, 914–924.

Monger H C, Kraimer R A, Khresat S, Cole D R, Wang X J, Wang J P. 2015. Sequestration of inorganic carbon in soil and groundwater. Geology43, 375–378.

Morgan M A, Jackson W A, Volk R J. 1985. Uptake and assimilation of nitrate by corn roots during and after induction of the nitrate uptake system. Journal of Experimental Botany36, 859–869.

Murphy J, Riley J P. 2002. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta27, 31–36.

Nayak A K, Gangwar B, Shukla A K, Majumdar S P, Kumar A, Kumar V, Mohan U. 2012. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic plains of India. Field Crop Research127, 129–139.

Nelson D, Sommers L. 1996. Chemical Methods Soil Science Society of America Book Series. In: Bigham J M, ed., Methods of Soil Analysis Part 3. Madison, California. pp. 961–1010.

Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. 2016. Greenhouse gas emissions from soils - a review. Chemie der Erde76, 327–352.

Ohshima T, Tamura T, Sato M. 2007. Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics65, 156–161.

Prosser J I. 1990. Autotrophic nitrification in bacteria. Advances in Microbial Physiology30, 125–181.

Shahbaz M, Kuzyakov Y, Heitkamp F. 2017. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma304, 76–82.

Sharma S, Singh P, Choudhary O P, Neemi S. 2021. Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice–wheat system in north-western India. Field Crops Research266, 108131.

Singh P, Benbi D K, Verma G. 2021. Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of rice–wheat cropping system in north-western India. Journal of Soil Science and Plant Nutrition21, 559–577.

Stewart C E, Paustian K, Conant R T, Plante A F, Six J. 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry86, 19–31.

Su Y Z, Wang F, Suo D R, Zhang Z H, Du M W. 2006. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutrient Cycling in Agroecosystems75, 285–295.

Subehia S K, Sepehya S, Rana S S, Negi S C, Sharma S K. 2013. Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.)–wheat (Triticum aestivum L.) yield, and chemical properties of an acidic soil in the western Himalayas. Experimental Agriculture49, 382–394.

Sun C, Chen L, Zhai L, Liu H, Wang K, Jiao C, Shen Z. 2020. National assessment of nitrogen fertilizers fate and related environmental impacts of multiple pathways in China. Journal of Cleaner Production277, 1–11.

Sutton M A, Bleeker A, Howard C M, Bekunda M, Grizzetti B, de Vries W, van Grinsven H J M, Abrol Y P, Adhya T K, Billen G, Davidson E A, Datta A, Diaz R, Erisman J W, Liu X J, Oenema O, Palm C, Raghuram N, Reis S, Scholz R W, et al. 2013. Our Nutrient World: The challenge to produce more food and energy with less pollution. In: Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative, United Kingdom.

Tang H, Cheng K, Shi L, Li C, Wen L, Li W, Sun M, Sun G, Long Z. 2022. Effects of long-term organic matter application on soil carbon accumulation and nitrogen use efficiency in a double-cropping rice field. Environmental Research213, 113700.

Tang H M, Xiao X P, Tang W G, Li C, Wang K, Li W Y, Cheng K K, Pan X C. 2018. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China. Communications in Soil Science and Plant Analysis49, 1976–1989.

Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. AgricultureEcosystems & Environment204, 40–50.

Tong B, Hou Y, Wang S, Ma W. 2022. Partial substitution of urea fertilizers by manure increases crop yield and nitrogen use efficiency of a wheat–maize double cropping system. Nutrient Cycling in Agroecosystems.

Vera J C, Portcarrero R, Pineiro G, Acreche M M. 2022. Increases in nitrogen use efficiency decrease nitrous oxide emissions but can penalize yield in sugarcane. Nutrient Cycling in Agroecosystems122, 41–57.

Wang C, Liu J, Shen J, Chen D, Li Y, Jiang B, Wu J. 2018. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. AgricultureEcosystems & Environment262, 83–96.

Wang J. Lu C, Xu M, Zhu P, Huang S, Zhang W, Peng C, Chen X, Wu L. 2013. Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Soil Use and Management29, 182–190.

Weng Z, Liu X, Eldridge S, Wang H, Rose T, Rose M, Rust J, Singh B P, Tavakkoli E, Tang C, Ou H, Van Z L. 2020. Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of nitrogen for plant uptake: A dual 13C and 15N isotope three-source-partitioning study. Soil Biology and Biochemistry146, 107792.

West T O, Six J. 2007. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change80, 25–41.

World Reference Base–International Union of Soil Science. 2014. IUSS Working Group World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication. World Soil Resources Report 103. Food and Agricultural Organization of the United Nations, Rome, Italy.

Wu Y, Ding N, Wang G, Xu J, Wu J, Brookes P C. 2009. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma150, 171–178.

Xia L L, Lam S K, Yan X Y, Chen D L. 2017. How does recycling of livestock manure in agroecosystems afect crop productivity, reactive nitrogen losses, and soil carbon Balance? Environmental Science & Technology51, 7450–7457.

Yadav G S, Datta R, Pathan S I, Lal R, Meena R S, Babu S, Das A. Bhowmik S N, Datta M, Saha P, Mishra P K. 2017. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in north-eastern region of India. Sustainability9, 1816.

Yadav R L, Dwivedi B S, Prasad K, Tomar O K, Shurpali N J, Pandey P S. 2000. Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crops Research68, 219–246.

Yang G, Tian J, Pang Y, Liu J. 2017. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Frontiers in Plant Science8, 1282.

Zhang Q, Song Y, Wu Z, Yan X, Gunina A, Kuzyakov Y, Xiong Z. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice–wheat rotation. Journal of Cleaner Production242, 118435.

Zhang S, Huang S, Li J, Guo D, Lina S, Lua G. 2016. Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)–maize (Zea mays L.) rotation system. Journal of the Science of Food and Agriculture97, 2575–2581.

Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, Li S, Hwang S W, Lee K B. 2012. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils & Sediments12, 457–470.

Zhang W, Yu Y Q, Sun W J, Huang Y. 2007. Simulation of soil organic carbon dynamics in Chinese rice paddies from 1980 to 2000. Pedosphere17, 1–10.

Zhang W, Zhao J, Pan F, Li D, Chen H, Wang K. 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil391, 77–91.

Zhang W J, Wang X J, Xu M G, Huang S M, Liu H, Peng C. 2010. Soil organic carbon dynamics under long-term fertilizations in arable land of north China. Biogeosciences7, 409–425.

Zhang X Y, Fang Q C, Zhang T, Ma W Q, Velthof G L, Hou Y, Oenema O, Zhang F S. 2019. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26, 14826.

Zhang Y, Li C, Wang Y, Hu Y, Christie P, Zhang J, Li X. 2016. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil & Tillage Research155, 85–94.

[1] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[2] ZOU Xiao-xia, HUANG Ming-ming, LIU Yan, SI Tong, ZHANG Xiao-jun, YU Xiao-na, GUO Feng, WAN Shu-bo. Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3430-3443.
[3] ZHANG Ya-jie, XU Jing-nan, CHENG Ya-dan, WANG Chen, LIU Gao-sheng, YANG Jian-chang. The effects of water and nitrogen on the roots and yield of upland and paddy rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1363-1374.
[4] TIAN Zhong-wei, LIU Xiao-xue, GU Shi-lu, YU Jin-hong, ZHANG Lei, ZHANG Wei-wei, JIANG Dong, CAO Wei-xing, DAI Ting-bo. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2648-2661.
No Suggested Reading articles found!