Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1588-1605    DOI: 10.1016/j.jia.2024.07.035
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production

Mengyan Cao1, Shaoping Ye2, Cheng Jin1, Junkang Cheng1, Yao Xiang1, Yu Song1, Guorong Xin1#, Chuntao He1#

1 State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Plant Stress Biology/School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China

2 Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China

 Highlights 
Winter green manures achieve a direct improvement of the AMF spore pool.
AMF communities established by winter green manure improves rice yield.
The AMF dominant genera Glomus of winter ryegrass could improve rice quality.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

南方稻田冬季种植绿肥可通过构建微生物群落有效改善土壤性状和水稻产量。然而,不同冬种绿肥土壤中丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)群落对土壤性状和水稻产量的影响尚不清楚。本研究探讨了冬闲、冬种黑麦草和冬种紫云英三种常见的华南地区冬季种植模式下稻田土壤AMF群落对后作水稻生产的影响。与冬闲相比,冬种黑麦草和冬种紫云英能缓解土壤酸化,显著增加土壤AMF孢子密度,改善土壤AMF群落结构。在灭菌土壤中,与未接种AMF孢子的处理相比,接种冬种紫云英土壤AMF孢子后的水稻千粒重、理论产量、稻米直链淀粉和总糖含量等指标提高了6.68-53.57%;接种冬种黑麦草土壤中AMF孢子后的水稻穗重、结实率和理论产量提高了15.38-22.71%,稻米蛋白质、直链淀粉和总糖含量分别为14.92104.82802.23 mg kg-1,比未接种AMF孢子的处理分别高出31.3114.2534.47%。冬种紫云英土壤中的AMF优势属无梗囊霉属(Acaulospora球囊霉属(Glomus对水稻产量的提高有更积极的作用。而冬种黑麦草土壤中的AMF优势属球囊霉属(Glomus更有利于稻米品质的提高。研究结果揭示了冬种绿肥土壤AMF群落对水稻生产的关键作用,为促进南方冬季农业的可持续发展奠定了理论基础。



Abstract  
Winter planting green manures in southern China effectively improve soil properties and rice production through microbial community construction.  However, the effects of soil communities of arbuscular mycorrhizal fungi (AMF) from different winter planting green manures on the soil properties and post-cropping rice production remain unclear.  In this study, the soil AMF communities of three common winter planting patterns in southern China, winter fallow, winter ryegrass (Lolium multiflorum L.), and winter Chinese milk vetch (Astragalus sinicus L.), were explored and their effects on post-cropping rice production were investigated.  Compared with winter fallow, the winter ryegrass and winter Chinese milk vetch patterns could alleviate soil acidification, significantly increase soil AMF spore density, and improve the soil AMF community structure.  Based on sterilized soil, rice production indicators such as thousand-seed weight, theoretical yield, and the grain amylose and total sugar contents of rice inoculated with AMF spores from winter Chinese milk vetch soil were 6.68–53.57% higher than those without AMF inoculation.  Rice panicle weight, seed setting rate, and theoretical yield were 15.38–22.71% higher in the treatment with AMF spores from winter ryegrass soil than in the treatments with no AMF inoculation.  In addition, the protein, amylose, and total sugar contents of rice grains were 14.92, 104.82, and 802.23 mg kg–1, respectively, which were 31.31, 14.25 and 34.47% higher than those without AMF inoculation.  The AMF community dominated by Glomus and Acaulospora in winter Chinese milk vetch had a more positive effect on the improvement of rice yield, while the AMF community dominated by Glomus in winter ryegrass soil was more conducive to rice quality improvement.  These findings have revealed the critical role of AMF communities from green manure in rice production, which lays the theoretical basis for a promising strategy to promote the sustainable development of southern winter agriculture.


Keywords:  green manure       paddy crop rotation        AMF community        rice yields        rice quality  
Received: 11 April 2024   Accepted: 12 June 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32171683), the Shenzhen Science and Technology Program, China (JCYJ20220530145606015), the Agricultural and Social Development Project of Guangzhou Municipal Science and Technology Bureau, China (202206010058), the Special Fund for Agro-scientific Research in the Public Interest of China (201503122), the Natural Science Foundation of Guangdong Province, China (2020A1515010494), the Yangfan Innovative & Entrepreneurial Research Team Project, China (2015YT02H032), and the Zhang Hong-da Science Research Fund of Sun Yat-sen University, China.
About author:  Mengyan Cao, E-mail: caomy8@mail2.sysu.edu.cn; #Correspondence Guorong Xin, Tel: +86-755-23260250, E-mail: lssxgr@mail.sysu.edu.cn; Chuntao He, Tel: +86-755-23260250, E-mail: hecht3@mail.sysu.edu.cn

Cite this article: 

Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. 2025. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production. Journal of Integrative Agriculture, 24(4): 1588-1605.

Bainard L D, Dai M L, Gomez E F, Torres-Arias Y T, Bainard J D, Sheng M, Eilers W, Hamel C. 2015. Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the Chernozem great groups of the Canadian Prairies. Plant and Soil387, 351–362.

Bao S D. 2000. Analytical Methods of Soil Agro-Chemistry. China Agriculture Press, Beijing. pp. 87–162. (in Chinese)

Barto E K, Hilker M, Müller F, Mohney B K, Weidenhamer J D, Rillig M C. 2011. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE6, e27195.

Begum N, Wang L, Ahmad H, Akhtar K, Roy R, Khan M L, Zhao T J. 2022. Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microbial Ecology83, 971–988.

Bernardo L, Carletti P, Badeck F W, Rizza F, Morcia C, Ghizzoni R, Rouphael Y, Colla G, Terzi V, Lucini L. 2019. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry137, 203–212.

Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A, Caporaso J G. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome6, 90.

Bi Y L, Zhang Y X, Jiang B, Qiu L. 2019. Effects of AM fungi and phosphate-solubilizing bacteria inoculation on maize growth and soil fertility under water stress. Journal of China Coal Society44, 3655–3661. (in Chinese)

Bunn R A, Simpson D T, Bullington L S, Lekberg Y, Janos D P. 2019. Revisiting the ‘direct mineral cycling’ hypothesis: Arbuscular mycorrhizal fungi colonize leaf litter, but why? The ISME Journal13, 1891–1898.

Burdon J J, Thrall P H. 1999. Spatial and temporal patterns in coevolving plant and pathogen associations. The American Naturalist153, 15–33.

Callahan B J, Mcmurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. Dada2: High-resolution sample inference from illumina amplicon data. Nature Methods13, 581–583.

Cao Y P, Dai P, Dai S Y, He C X. 2015. Effects of arbuscular mycorrhizal fungi (AMF) on growth and the contents and distribution of Na+, K+, Ca2+ and Mg2+ in asparagus seedlings under salt stress. Chinese Journal of Ecology34, 1699–1704. (in Chinese)

Chen J X, Guo J W, Yang Z X, Yang J Q, Dong H W, Wang H Y, Wang Y L, Zhan F D. 2023. The application of fertilizer and AMF promotes growth and reduces the cadmium and lead contents of ryegrass (Lolium multiflorum L.) in a copper mining area. Phyton-International Journal of Experimental Botany92, 471–485.

Chen X H, Zhao B. 2005. Effect of arbuscular mycorrhizal fungi on uptake of N, P and K by Astragalus sinicus L. in copper polluted soil. Journal of Agro-Environment Science24, 438–441.

Chen X H, Zhao B. 2007. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astragalus sinicus L.). Chemosphere68, 1548–1555.

Chen X H, Zhao B. 2009. Arbuscular mycorrhizal fungi mediated uptake of nutrient elements by Chinese milk vetch (Astragalus sinicus L.) grown in lanthanum spiked soil. Biology and Fertility of Soils45, 675–678.

Cheng J K, Yue M F, Yang H R, Chen B M, Xin G R. 2019. Do arbuscular mycorrhizal fungi help the native species Bidens biternata resist the invasion of Bidens albaPlant and Soil444, 443–455.

Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, Segundo B S. 2020. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice13, 42.

De B M, Muleta D, Peeters B, Van G M, Lievens B, Honnay O. 2015. DNA pyrosequencing evidence for large diversity difference between natural and managed coffee mycorrhizal fungal communities. Agronomy for Sustainable Development35, 241–249.

Doi E, Shibata D, Matoba T. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry118, 173–184.

Duan G K, Liu M, Liang Z W, Wang M M, Yang H Y, Xu Y, Yu T, Jin Y Y, Hu J F, Liu J Q. 2023. Amendments of severe saline-sodic paddy land: Optimal combination of phosphogypsum, farmyard fertilizer, and wood peat. Agronomy13, 1364.

Duan S L, Declerck S, Feng G, Zhang L. 2023. Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon–phosphorus exchange at the peri-arbuscular space in Medicago truncatulaEnvironmental Microbiology25, 867–879.

Edmeades D C. 2003. The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems66, 165–180.

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

Fresno D H, Solé-Corbatón H, Munné-Bosch S. 2023. Water stress protection by the arbuscular mycorrhizal fungus Rhizoglomus irregulare involves physiological and hormonal responses in an organ-specific manner. Physiologia Plantarum175, e13854.

Gao S J, Zhang R G, Cao W D. 2015. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture14, 2512–2520.

Goulding K. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management32, 390–399.

Graham J H, Eissenstat D M. 1994. Host genotype and the formation and function of VA mycorrhizae. Plant and Soil159, 179–185.

Han T, Mi Z R, Chen Z, Zhao J J, Zhang H G, Lv Y, Du S Y, Bu R F, Zhou J G, Li X Z, Sun Z Q, Chen Z, Song Y T, Zhang J, Hao R J, Ge S D. 2022. Multi-omics analysis reveals the influence of tetracycline on the growth of ryegrass root. Journal of Hazardous Materials435, 129019.

Hazard C, Gosling P, van der Gast C J, Mitchell D T, Doohan F M, Bending G D. 2013. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. The ISME Journal7, 498–508.

He H B, Li W X, Zhang Y W, Cheng J K, Jia X Y, Li S, Yang H R, Chen B M, Xin G R. 2020. Effect of Italian ryegrass residues as green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)–rice (Oryza sativa L.) rotation. Soil and Tillage Research196, 104487.

He H B, Zhang Y W, Cheng J K, Jia X Y, Xin G R, Chen W G. 2019. Effects of planting Italian ryegrass (Lolium multiflorum L.) during winter leisure on soil properties in paddy fields. Ecological Science38, 155–161. (in Chinese)

Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D. 2006. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology15, 2277–2289.

Huang G Q. 2022. Achievements, problems and strategic countermeasures of paddy farming system development in south China. Journal of Huazhong Agricultural University41, 1–20. (in Chinese)

Jama B. 2000. Tithonia diversifolia as a green mansure for soil fertility improvement in western Kenya: A review. Agroforestry Systems49, 201–221.

Jamiolkowska A, Ksiezniak A, Galazka A, Hetman B, Kopacki M, Skwarylo-Bednarz B. 2018. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: A review. International Agrophysics32, 133–140.

Kakabouki L, Stavropoulos P, Roussis L, Mavroeidis A, Bilalis D. 2023. Contribution of arbuscular mycorrhizal fungi (AMF) in improving the growth and yield performances of flax (Linum usitatissimum L.) to salinity stress. Agronomy13, 2416.

Kalisz S, Kivlin S N, Bialic-Murphy L. 2021. Allelopathy is pervasive in invasive plants. Biological Invasions23, 367–371.

Kang Y H, Zhang J L, Wen Y Y, Shang P X, Mo H J, Song J, Cheng T, Chen S T. 2023. Effects of nine arbuscular mycorrhizal fungi on the growth and development of Poncirus trifoliate Raf and Citrus Junos. ex Tanaka seedlings. Soil and Fertilizer Sciences in China9, 200–208. (in Chinese)

Koegel S, Mieulet D, Baday S, Chatagnier O, Lehmann M, Wiemken A, Boller T, Wipf D, Bernèche S, Guiderdoni E, Courty P E. 2017. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza27, 695–708.

Lawson T. 2009. Guard cell photosynthesis and stomatal function. New Phytologist181, 13–34.

Leigh J, Hodge A, Fitter A H. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist181, 199–207.

Li S P, Lin Z, Li D Z, Chen B Y, Ye S P, Xin G R. 2010. Effects of arbuscular mycorrhizal fungi in the rhizosphere of Italian ryegrass on succeeding rice growth. Ecological Science29, 411–416. (in Chinese)

Li S Y, Chen Y, Yu F, Zhang Y J, Liu K, Zhuo X X, Qiu Y Y, Zhang H, Gu J F, Wang W L, Yang J C, Liu L J. 2022. Reducing methane emission by promoting its oxidation in rhizosphere through nitrogen-induced root growth in paddy fields. Plant and Soil474, 541–560.

Li X G, Jousset A, de Boer W, Carrión V J, Zhang T L, Wang X X, Kuramae E E. 2019. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. The ISME Journal13, 738–751.

Li Z Y, Wang S Y, Wang W N, Gu J C, Ding Y Y, Wang Y. 2023. Contrasting responses of new pioneer and fibrous roots exposed to nitrogen deposition: A field study using three woody species. Plant and Soil493, 459–474.

Liu Q, Zhao Y X, Li T, Chen L, Chen Y Q, Sui P. 2023. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis. Applied Soil Ecology186, 104815.

Liu R J, Wang F Y. 2003. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza13, 123–127.

Liu Z X, Liu J J, Yu Z H, Yao Q, Li Y S, Liang A Z, Zhang W, Mi G, Jin J, Liu X B, Wang G H. 2020. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil and Tillage Research197, 104503.

Lu R K. 2000. Agriculture Chemical Analysis Methods of Soil. China Agricultural Science and Technology Press, Beijing. pp. 106–195. (in Chinese)

Ma D K, Yin L N, Ju W L, Li X K, Liu X X, Deng X P, Wang S W. 2021. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Research266, 108146.

Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil159, 89–102.

Mathur S, Sharma M P, Jajoo A. 2018. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology (B: Biology), 180, 149–154.

Nopphakat K, Runsaeng P, Klinnawee L. 2022. Acaulospora as the dominant arbuscular mycorrhizal fungi in organic lowland rice paddies improves phosphorus availability in soils. Sustainability14, 31.

Nouri E, Breuillin S F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybridaPLoS ONE9, 1–14.

Paranavithana T M, Marasinghe S, Perera G A D, Ratnayake R R. 2021. Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonaly dry tropics. Paddy and Water Environment19, 217–226.

Peha-Valdivia C B, Ortega-Delgado M L. 1991. Non-structural carbohydrate partitioning in Phaseolus vulgar’is after vegetative growth. Journal of the Science of Food and Agriculture55, 563–577.

Phillips J M, Hayman D S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society55, 158–161.

Rajat G, Vijay M, Ram S K, Mohan S M, Kumar S R. 2021. Production of IAA by arbuscular mycorrhizal fungus Glomus deserticola and yeast Pichia fermentans to improve plant growth. Research Journal of Biotechnology16, 117–122.

Ren D Y, Ding C Q, Qian Q. 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin68, 314–350.

Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M. 2017. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytologist213, 380–390.

Rong F L, Qin S S, Su G R, Wu L Q, Wu A P, Wang X H, Zhang M Y, Chen F L. 2023. Legacy effect of single biochar application on soil ecosystem multifunctionality and its contribution to rice yield: A five-year field experiment for acidic paddy. Field Crops Research303, 109141.

Sabaiporn N, Wasan S, Jindarat E, Pikada T, Jirawat S, Thomas W K, Sophon B. 2023. Arbuscular mycorrhizal fungi enhance growth and increase concentrations of anthocyanin, phenolic compounds, and antioxidant activity of black rice (Oryza sativa L.). Soil Systems7, 44.

Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S. 1996. Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc+) and non-host (mycPisum sativum root exudates. Agronomie16, 709–719.

Secilia J, Bagyaraj D J. 1994. Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice: A preliminary screen. Mycorrhiza4, 265–268.

Sehgal A, Singh G, Quintana N, Kaur G, Ebelhar W, Nelson K A, Dhillon J. 2023. Long-term crop rotation affects crop yield and economic returns in humid subtropical climate. Field Crops Research298, 108952.

Shao Y, Jiang S, Peng H, Li H, Li P, Jiang R, Fang W, Chen T, Jiang G, Yang T, Nambeesan S U, Xu Y, Dong C. 2023. Indigenous and commercial isolates of arbuscular mycorrhizal fungi display differential effects in Pyrus betulaefolia roots and elicit divergent transcriptomic and metabolomic responses. Frontiers in Plant Science13, 1040134.

Sieh D, Watanabe M, Devers E A, Brueckner F, Hoefgen R, Krajinski F. 2013. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatulaNew Phytologist197, 606–616.

Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. 3rd ed. Elsevier, New York. pp. 13–41.

Sun M F, Yuan D, Hu X C, Zhang D J, Li Y Y. 2020. Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca48, 2006–2020.

Tao J M, Liu X D, Liang Y L, Niu J J, Xiao Y H, Gu Y B, Ma L Y, Meng D L, Zhang Y G, Huang W K, Peng D L, Yin H Q. 2017. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Applied Microbiology and Biotechnology101, 1289–1299.

Trejo-Aguilar D, Banuelos J. 2020. Isolation and culture of arbuscular mycorrhizal fungi from field samples. In: Ferrol N, LanfrancoL, eds., Arbuscular Mycorrhizal FungiMethods and Protocols. Springer, USA, pp. 1–18.

Tsai S M, Phillips D A. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitroApplied and Environmental Microbiology57, 1485–1508.

Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E. 2009. Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Annals of Applied Biology154, 195–204.

Van G M, Busschaert P, Honnay O, Lievens B. 2014. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencin. Journal of Microbiological Methods106, 93–100.

Vignale M V, Iannone L J, Scervino J M, Novas M V. 2018. Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant and Soil422, 267–281.

Wang H, Tang S, Han S, Li M, Cheng W L, Bu R Y, Cao W D, Wu J. 2023. Effects of long-term substitution of chemical fertilizer with Chinese milk vetch on soil phosphorus availability and leaching risk in the double rice systems of Eastern China. Field Crops Research302, 109047.

Wang Z C, Zhao J, Xiao D, Chen M F, He X Y. 2023. Higher colonization but lower diversity of root-associated arbuscular mycorrhizal fungi in the topsoil than in deep soil. Applied Soil Ecology194, 105195.

Wen Y Y, Zhang J L, Xu S P, Zeng S Y, Chen S T. 2023. Effects of different arbuscular mycorrhizal fungi on the growth and nutrient absorption of Catharanthus roseusSouth China Agriculture17, 1–4. (in Chinese)

Wu C, Kong X S, He X B, Song F Q, Lin Y H, Jia Y Y, Kurakov A V, He Z H. 2022. The biotic and abiotic factors of regulation of arbuscular mycorrhizal fungi activity in litter decomposition: Review. Eurasian Soil Science55, 1446–1459.

Wu M X, Zhao X L, Liu W, Zhang L, He L. 2018. Characteristics of hydrothermal conditions and their impacts on agricultural production in winter of 2017/2018. Chinese Journal of Agrometeorology39, 354–356. (in Chinese)

Wu Q S, Liu C Y, Zhang D J, Zou Y N, He X H, Wu Q H, 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza26, 237–247.

Xu P, Jiang M D, Jiang Y B, Khan I, Zhou W, Wu H T, Wu X, Shaaban M, Lu J W, Hu R G. 2022. Prior nitrogen fertilization stimulated N2O emission from rice cultivation season under a rapeseed-rice production system. Plant and Soil471, 685–696.

Xu P, Zhou W, Jiang M D, Khan I, Shaaban M, Jiang Y B, Hu R G. 2020. Nitrogen fertilizer application in the rice-growing season can stimulate methane emissions during the subsequent flooded fallow period. Science of the Total Environment744, 140632.

Yamauchi T, Abe F, Tsutsumi N, Nakazono M. 2019. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science10, 259.

Yang H S, Zhou J J, Weih M, Li Y F, Zhai S L, Zhang Q, Chen W P, Liu J, Liu L, Hu S J. 2020. Mycorrhizal nitrogen uptake of wheat is increased by earthworm activity only under no-till and straw removal conditions. Applied Soil Ecology155, 103672.

Yang J C, Zhou Y J, Jiang Y. 2022. Amino acids in rice grains and their regulation by polyamines and pphytohormones. Plants11, 1581.

Yang S Y, Gronlund M, Jakobsen L, Grotemeyer M S, Rentsch D, Miyao A, Hirochika H, Kumar C S, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. The Plant Cell24, 4236–4251.

Yang X L, Xiong J R, Du T S, Ju X T, Gan Y T, Li S, Xia L L, Shen Y J, Pacenka S, Steenhuis T S, Siddique K H M, Kang S Z, Butterbach-Bahl K. 2024. Diverse crop rotations can increase food yields and improve soil health. Crop rotation can also improve plant disease resistance by improving native soil microbial communities. Nature Communications15, 198.

Yao Y S, Lin Z Z, Li Y, Jia T. 2022. Effects of arbuscular mycorrhizal fungus on growth and photosynthetic characteristics of Sorghum bicolorJournal of Shanxi University (Natural Science Edition), 45, 1377–1384. (in Chinese)

Ye S P, Yang Y J, Xin G R, Wang Y T, Ruan L, Ye G R. 2015. Studies of the Italian ryegrass-rice rotation system in southern China: Arbuscular mycorrhizal symbiosis affects soil microorganisms and enzyme activities in the Lolium mutiflorum L. rhizosphere. Applied Soil Ecology90, 26–34.

Zhao J, Yang Y D, Zhang K, Jeong J H, Zeng Z H, Zang H D. 2020. Does crop rotation yield more in China? A meta-analysis. Field Crops Research245, 107659.

Zhang B, Shi F, Zheng X, Pan H Y, Wen Y Q, Song F Q. 2023. Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments. Rice16, 18.

Zhang C T, Peng X, Song Y, Xin G R. 2022. Analysis of arbuscular mycorrhizal fungi diversity and microflora structure in Zoysia field of ‘Lanyin No. 3’. Grassland and Turf42, 27–34, 44. (in Chinese)

Zhang L, Feng G, Declerck S. 2018. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal12, 2339–2351.

Zhang L, Xu M G, Liu Y, Zhang F S, Hodge A, Feng G. 2016. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist210, 1022–1032.

Zhang X, Wang L, Ma F, Yang J X, Su M. 2016. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). Journal of the Science of Food and Agriculture97, 2919–2925.

Zhou Y Y, Yang Z, Liu J G, Li X D, Wang X X, Dai C C, Zhang T L, Carrión V J, Wei Z, Cao F L, Delgado-Baquerizo M, Li X G. 2023. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nature Communications14, 8126.

Zhu X R, Li X T, Xing F, Chen C, Huang G H, Gao Y. 2020. Interaction between root exudates of the poisonous plant Stellera chamaejasme L. and arbuscular mycorrhizal fungi on the growth of Leymus Chinensis (Trin.) Tzvel. Microorganisms8, 364.

[1] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[2] LIANG Hai, FU Li-bo, CHEN Hua, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1199-1215.
[3] LIU Rui, ZHOU Guo-peng, CHANG Dan-na, GAO Song-juan, HAN Mei, ZHANG Jiu-dong, SUN Xiao-feng, CAO Wei-dong. Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1177-1187.
[4] Sheng-Han-Erin CHANG, YI Xiao-yan, Johannes SAUER, YIN Chang-bin, LI Fu-duo. Explaining farmers’ reluctance to adopt green manure cover crops planting for sustainable agriculture in Northwest China[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3382-3394.
[5] GAO Song-juan, GAO Ju-sheng, CAO Wei-dong, ZOU Chun-qin, HUANG Jing, BAI Jin-shun, DOU Fu-gen. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1852-1860.
[6] GAO Song-juan CAO Wei-dong, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, SHIMIZU Katsuyoshi . Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China[J]. >Journal of Integrative Agriculture, 2017, 16(04): 959-966.
[7] ZHANG Li-ping, ZHANG Shi-wen, ZHOU Zhi-ming, HOU Sen, HUANG Yuan-fang, CAO Wei-dong. Spatial distribution prediction and benefits assessment of green manure in the Pinggu District, Beijing, based on the CLUE-S model[J]. >Journal of Integrative Agriculture, 2016, 15(2): 465-474.
[8] GAO Song-juan, ZHANG Ren-gang, CAO Wei-dong, FAN Yuan-yuan, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, Shimizu Katsu-yoshi, Kristian Thorup-Kristensen. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2512-2520.
[9] YANG Zeng-ping, ZHENG Sheng-xian, NIE Jun, LIAO Yu-lin, XIE Jian. Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System[J]. >Journal of Integrative Agriculture, 2014, 13(8): 1772-1781.
[10] YANG Zeng-ping, XU Ming-gang, ZHENG Sheng-xian, NIE Jun, GAO Ju-sheng, LIAO Yu-lin , XIE Jian . Effects of Long-Term Winter Planted Green Manure on Physical Properties of Reddish Paddy Soil Under a Double-Rice Cropping System[J]. >Journal of Integrative Agriculture, 2012, 12(4): 655-664.
No Suggested Reading articles found!