Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1529-1545    DOI: 10.1016/j.jia.2022.09.025
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China
ZHANG Zi-han1*, NIE Jun2*, LIANG Hai1, WEI Cui-lan3, WANG Yun1, LIAO Yu-lin2, LU Yan-hong2, ZHOU Guo-peng4, GAO Song-juan1#, CAO Wei-dong4#
1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R.China  2 Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, P.R.China  3 College of Environment and Ecology, Jiangsu Open University, Nanjing 210036, P.R.China  4 Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  紫云英-稻秸联合利用作为一种高效的耕作模式在我国南方稻区已有广泛应用,然而其对稻田土壤团聚体和土壤有机碳稳定性的影响尚缺乏研究。本文基于田间定位试验,研究了紫云英、稻秸及其联合利用对土壤团聚体分布和有机碳组分的影响。田间定位试验设6个处理,分别为冬闲稻秸不还田(Crtl)、冬闲稻秸半量还田(1/2RS)、冬闲稻秸全量还田(RS)、冬种紫云英稻秸不还田(GM)、冬种紫云英稻秸半量还田(GM1/2RS)、冬种紫云英稻秸全量还田(GMRS)。结果表明,GMRS相比RS处理,土壤细大团聚体(0.25-2 mm)含量和团聚体平均质量直径(MWD)分别增加18.9%3.41%,粉粘粒(<0.053 mm)含量降低14.4%GMRS相比GMRS,提高了微团聚体(0.053-0.25 mm)和粉粘粒中的SOC含量。GMRS处理相比RS显著增加了各粒径团聚体和全土中的轻组有机碳(fLOC)含量及其在碳组分中的占比,降低了细大团聚体、微团聚体和全土中矿质结合态有机碳(MOC)的含量及其在碳组分中的占比。GMRS相比GM提高了颗粒态有机碳(iPOC)在有机碳组分中的占比。GMRS对细大团聚体中的iPOC有强烈的正影响,说明联合利用能够促进fLOC转移到iPOC综上紫云英-稻秸联合利用能够通过提高fLOC含量培育土壤有机碳库,并促进有机碳转化为iPOC以物理保护的形式固存而提高其稳定性

Abstract  The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China. However, its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear. In the present study, the effect of GM, RS, and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment. The experiment included six treatments, i.e., winter fallow (WF) without RS return (Ctrl), WF with 50% RS return (1/2RS), WF with 100% RS return (RS), GM without RS return (GM), GM with 50% RS return (GM1/2RS) and GM with 100% RS return (GMRS). The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%, respectively) than in the RS treatment, while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%). The concentration of SOC in microaggregates (0.053–0.25 mm) and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually. The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment, whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates, microaggregates, and bulk was lower in the GMRS treatment than in the RS treatment. The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment. The GMRS treatment had strong positive effects on iPOC in small macroaggregates, suggesting that SOC was transferred from fLOC to iPOC. In conclusion, co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.
Keywords:  soil aggregation       milk vetch        rice straw        SOC density fractions        C stability        paddy soil  
Received: 29 May 2022   Accepted: 22 August 2022
Fund: The study was funded by the National Key Research and Development Program of China (2021YFD1700200), the earmarked fund for China Agriculture Reserch System (CARS-22), and the Natural Science Foundation of Jiangsu Province, China (BK20200112).
About author:  ZHANG Zi-han, E-mail:; NIE Jun, E-mail:; #Correspondence GAO Song-juan, Tel: +86-25-84399707, E-mail:; CAO Wei-dong, Tel: +86-10-82109622, E-mail: * These authors contributed equally to this study

Cite this article: 

ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. 2023. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China. Journal of Integrative Agriculture, 22(5): 1529-1545.

Bandyopadhyay P K, Saha S, Mani P K, Mandal B. 2010. Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice–wheat cropping system. Geoderma154, 379–386.

Benbi D K, Senapati N. 2010. Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice–wheat systems in northwest India. Nutrient Cycling in Agroecosystems87, 233–247.

Birendra N, Vijay S, Raman J. 2019. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize–wheat rotation in the north-western Indian Himalayas. Ecological Indicators105, 415–424.

Le Bissonnais Y, Prieto I, Roumet C, Nespoulous J, Metayer J, Huon S, Villatoro M, Stokes A. 2018. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: Effect of plant roots and soil characteristics. Plant and Soil424, 303–317.

Blanco-Canqui H, Mikha M M, Presley D R. 2011. Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Science Society of America Journal75, 1471–1482.

Cambardella C A, Elliott E T. 1994. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal58, 123–130.

Castellano M J, Mueller K E, Olk D C. 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology21, 3200–3209.

Chang H L, Park K D, Jung K Y, Ali M A, Kim P J. 2015. Effect of Chinese milk vetch (Astragalus sinicus, L.) as a green manure on rice productivity and methane emission in paddy soil. AgricultureEcosystems & Environment138, 343–347.

Chatterjee A. 2013. Annual crop residue production and nutrient replacement costs for bioenergy feedstock production in United States. Agronomy Journal105, 685–692.

Comin J J, Ferreira L B, Santos L H. 2018. Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations. Soil & Tillage Research184, 195–202.

Denef K, Zotarelli L, Boddey R M, Six J. 2007. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology & Biochemistry39, 1165–1172.

Dikgwatlhe S B, Chen Z D, Lal R, Zhang H L, Chen F. 2014. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil & Tillage Research144, 110–118.

Dou X, Cheng X, He P, Zhu P, Zhou W, Wang L. 2017. Dynamics of physically separated soil organic carbon pools assessed from δ13C changes under 25 years of cropping systems. Soil & Tillage Research174, 6–13.

E S Z, Li X G, Chen Z M. 2012. Long-term fertilization and manuring effects on physically separated soil organic-matter pools under continuous wheat cropping at a rainfed semiarid site in China. Plant Nutrition and Soil Science175, 689–697.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal50, 627–633.

Fungo B, Lehmann J, Kalbitz K. 2017. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil & Tillage Research165, 190–197.

Gao S J, Zhang R G, Cao W D. 2015. Long-term rice–rice–green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture14, 2512–2520.

Garcia-Franco N, Albaladejo J, Almagro M, Martínez-Mena M. 2015. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil & Tillage Research153, 66–75.

Ghosh A, Bhattacharyya R, Meena M C, Dwivedi B S, Singh G, Agnihotri R, Sharma C. 2018. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Research177, 134–144.

Guan S, Dou S, Chen G. 2015. Isotopic characterization of sequestration and transformation of plant residue carbon in relation to soil aggregation dynamics. Applied Soil Ecology96, 18–24.

Guan S, Liu S, Liu R. 2019. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. Journal of Integrative Agriculture18, 1496–1507.

Hao X, Yang C, Yuan Y, Han X, Li L, Jiang H. 2013. Effects of continuous straw return on organic carbon content in aggregates and fertility of black soil. Science Bulletin29, 263–269.

Kabiri V, Raiesi F, Ghazavi M A. 2015. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran. Soil & Tillage Research154, 114–125.

Karami A, Homaee M, Afzalinia S, Ruhipour H, Basirat S. 2012. Organic resource management: impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture Ecosystems & Environment148, 22–28.

Kim M K, Lee Y H, Kang T H, Yun H D. 2011. Influence of Chinese milk vetch (Astragalus sinicus, L.) with no-tillage on soil biotic factors and rice yield. Journal of the Korean Society for Applied Biological Chemistry54, 899–909.

Kong A Y Y, Six J, Bryant D C. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal69, 1078–1085.

Kushwaha C P, Tripathi S K, Sigh K P. 2001. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Applied Soil Ecology16, 229–241.

Li F C, Wang Z H, Dai J, Li Q, Wang X, Xue C, Liu H, He G. 2015. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biology and Fertility of Soils51, 769–780.

Liu A, Ma B L, Bomke A A. 2005. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal69, 2041–2048.

Liu C, Lu M, Cui J, Li B, Fang C. 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology20, 1366–1381.

Liu M, Feng H, Chen X, Huang Q, Jiao J, Zhang B. 2009. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Applied Soil Ecology42, 166–175.

Liu K, Han T, Huang J, Huang Q, Li D, Hu Z, Yu X, Muhammad Q, Ahmed W, Hu H. 2019. Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma, 352, 160–170.

Ma J, Ma E, Xu H, Yagi K, Cai Z C. 2009. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry41, 1022–1028.

Martin J P, Waksman S A. 1940. Influence of microorganisms on soil aggregation and erosion. Soil Science50, 29–48.

Mi W, Sun Y, Xia S, Zhao H, Mi W, Brookes P C. 2018. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma320, 23–29.

Muhammad K, Li H, Nie J, Geng M J, Lu Y H, Liao Y L, Zhou F L, Xu Y H. 2021. Effect of reduced mineral fertilization (NPK) combined with green manure on aggregate stability and soil organic carbon fractions in a fluvo-aquic paddy soil. Soil & Tillage Research211, 105005.

Nie J, Zhou J M, Wang H Y, Chen X Q. 2007. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere17, 295–302.

Nimmo J R, Perkins K S. 2002. Aggregate stability and size distributions. Methods of Soil Analysis Part Physical Methods. SSSA Book Series, USA. pp. 425–442.

Olsen S R, Cole C U, Watanabe F S, Deen L A. 1954. Estimation of Available Phosphorus in Soil by Extracting with Sodium Bicarbonate. USDA Circular 939, Washington.

Sainju U M, Whitehead W F, Singh B R. 2003. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Soil Science83, 155–165.

Samahadthai P, Vityakon P, Saenjan P. 2010. Effects of different quality plant residues on soil carbon accumulation and aggregate formation in a tropical sandy soil in northeast thailand as revealed by a 10-year field experiment. Land Degrdation and Rehabilitation21, 463–473.

Schuman G E, Janzen H H, Herrick J E. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution116, 391–396.

Six J, Elliott E T, Paustian K, Doran J W. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal62, 1367–1377.

Six J, Paustian K, Elliott E T. 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal64, 681–689.

Tisdall J M, Oades J M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science33, 141–163.

Tong X, Xu M, Wang X. 2014. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena113, 251–259.

Wang J Z, Wang X J, Xu M G, Gu F, Zhang W J, Lu C. 2015. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems102, 371–381.

Wang Y X, Weng B Q, Ye J, Zhong Z M, Huang Y B. 2015. Carbon sequestration in a nectarine orchard as affected by green manure in China. European Journal of Horticultural Science80, 208–215.

Wiesmeier M, Lungu M, Hübner R, Cerbari V. 2015. Remediation of degraded arable steppe soils in Moldova using vetch as green manure. Solid Earth6, 609.

Wrb I. 2014. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO, Rome.

Xie J, Peng B, Wang R, Batbayar J, Hoogmoed M, Yang Y. 2018. Responses of crop productivity and physical protection of organic carbon by macroaggregates to long-term fertilization of an Anthrosol. European Journal of Soil Science69, 555–567.

Xie Z J, Tu M, Shah F, Xu C X, Cheng J R. 2016. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crop Reserach188, 142–149.

Yan Y, He H, Zhang X. 2012. Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Canadian Journal of Soil Science, 92, 509–519.

Yang L, Zhou X, Liao Y L. 2019. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake. Crop Science59, 749–759.

Yang Z P, Zhang S X, Nie J. 2014. Effects of long-term winter planted green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system. Journal of Integrative Agriculture13, 1772–1781.

Zhao H, Shar A G, Li S, Chen Y, Shi J, Zhang X. 2018. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize–wheat double cropping system. Soil & Tillage Research175,178–186.

Zhou G P, Cao W D, Bai J S. 2019. Non-additive responses of soil C and N to rice straw and hairy vetch (Vicia villosa Roth L.) mixtures in a paddy soil. Plant and Soil436, 1–16.

Zhou G P, Gao S J, Lu Y H. 2020. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil & Tillage Research197, 104499.

Zhou P, Song G H, Pan G X. 2008. SOC accumulation in three major types of paddy soils under long-term agro-ecosystem experiments from South China I. Physical protection in soil microaggregates. Acta Pedologica Sinica45, 1063–1071. (in Chinese)

Zhu B, Yi L, Hu Y, Zeng Z, Lin C, Tang H. 2014. Nitrogen release from incorporated 15N-labelled Chinese milk vetch (Astragalus sinicus L.) residue and its dynamics in a double rice cropping system. Plant and Soil374, 331–344.

Zhu H, Wu J, Huang D, Zhu Q, Liu S, Su Y. 2010. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant and Soil331, 427–437.

[1] K?stutis Romaneckas, Egidijus ?arauskis, Dovil? Avi?ienyt?, Sidona Buragien?, David Arney. The main physical properties of planosol in maize (Zea mays L.) cultivation under different long-term reduced tillage practices in the Baltic region[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1309-1320.
No Suggested Reading articles found!