Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3159-3173    DOI: 10.1016/j.jia.2024.03.047
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms

Delei Kong1, 2*, Xianduo Zhang3*, Qidong Yu2, Yaguo Jin2, Peikun Jiang1, Shuang Wu2, 4#, Shuwei Liu2, 4, Jianwen Zou2, 4

1 College of Environment and Resources/College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
2 Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
3 Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
4 Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
节水灌溉策略可以有效减少稻田甲烷排放,但由于土壤含氧量和氧化还原电位的变化,会强烈刺激氧化亚氮(N2O)的排放。然而,目前有关不同施肥措施下节水灌溉稻田土壤N2O排放与氮(N)循环功能基因之间的关系却很少被研究。此外,有机肥替代化肥对稻田N2O排放的减排潜力及微生物学机制有待进一步阐明。本研究分析了我国东南部连续两年不同施肥措施对稻田土壤N2O排放和相关功能微生物【氨氧化古菌(AOA)、氨氧化细菌(AOB)、nirSnirKnosZ】的影响。共设置了三个试验处理:不施氮肥(Control)、化学氮肥(Ni)和有机肥部分替代化学氮肥(Ni+No)。研究结果表明,平均两个水稻生长季,Control、Ni和Ni+No处理的N2O累积排放量分别为0.47、4.62和4.08 kg ha−1。与Ni处理相比,Ni+No施肥措施在保障水稻产量的同时,显著降低了土壤N2O排放量11.6%,其N2O排放因子(EF)为0.95%。与Control处理相比,施用氮肥可以显著提高AOB、nirSnirKnosZ基因丰度。有机肥部分替代化学氮肥显著降低了AOB和nirS基因丰度,但增加了nosZ基因丰度。AOB对氮肥的响应比AOA更敏感。N2O累积排放量与AOB、nirS基因丰度呈正相关关系,而与nosZ基因丰度、nosZ/nirS比值呈负相关关系。综上所述,在节水灌溉稻田中,有机肥替代化学氮肥可以减少土壤N2O排放,主要通过改变土壤NO3--N、pH和DOC含量,从而抑制硝化过程的氨氧化和反硝化过程的亚硝酸盐还原,以及增强反硝化过程的N2O还原。


Abstract  
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields, but significantly stimulate nitrous oxide (N2O) emissions because of variations in soil oxygen level and redox potential.  However, the relationship linking soil N2O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.  Furthermore, the mitigation potential of organic fertilizer substitution on N2O emissions and the microbial mechanism in rice fields must be further elucidated.  Our study examined how soil N2O emissions were affected by related functional microorganisms (ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nirS, nirK and nosZ) to various fertilization treatments in a rice field in southeast China over two years.  In this study, three fertilization regimes were applied to rice cultivation: a no nitrogen (N) (Control), an inorganic N (Ni), and an inorganic N with partial N substitution with organic manure (Ni+No).  Over two rice-growing seasons, cumulative N2O emissions averaged 0.47, 4.62 and 4.08 kg ha−1 for the Control, Ni and Ni+No treatments, respectively.  In comparison to the Ni treatment, the Ni+No fertilization regime considerably reduced soil N2O emissions by 11.6% while maintaining rice yield, with a lower N2O emission factor (EF) from fertilizer N of 0.95%.  Nitrogen fertilization considerably raised the AOB, nirS, nirK and nosZ gene abundances, in comparison to the Control treatment.  Moreover, the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.  The AOB responded to N fertilization more sensitively than the AOA.  Total N2O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.  In summary, we conclude that organic manure substitution for inorganic N fertilizer decreased soil N2O emissions primarily by changing the soil NO3-N, pH and DOC levels, thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification, and strengthening N2O reduction in denitrification from water-saving rice paddies.


Keywords:  organic manure substitution       inorganic fertilizer        N2O        functional microbe        rice paddy  
Received: 18 August 2023   Accepted: 31 January 2024
Fund: 
This work was supported by the National Key Research and Development Program of China (2022YFD2300300), the National Natural Science Foundation of China (41907072), the Scientific Research Foundation of Zhejiang A&F University, China (2022LFR003) and the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(21)3007).
About author:  Delei Kong, E-mail: deleikong@zafu.edu.cn; Xianduo Zhang, E-mail: 2017216034@njau.edu.cn; #Correspondence Shuang Wu, E-mail: wushuang@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. 2024. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms. Journal of Integrative Agriculture, 23(9): 3159-3173.

Azziz G, Monza J, Etchebehere C, Irisarri P. 2017. nirS-and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. European Journal of Soil Biology78, 20–28.

Bakken L R, Bergaust L, Liu B, Frostegård Å. 2012. Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philosophical Transactions of the Royal Society (B: Biological Sciences), 367, 1226–1234.

Berger S, Jang I, Seo J, Kang H, Gebauer G. 2013. A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry115, 317–332.

Bornø M L, Rønn R, Ekelund F. 2020. Is wood ash amendment a suitable mitigation strategy for N2O emissions from soil? Science of the Total Environment713, 136581.

Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research189, 168–175.

Carey C J, Dove N C, Beman J M, Hart S C, Aronson E L. 2016. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biology and Biochemistry99, 158–166.

Chagas J K M, de Figueiredo C C, Ramos M L G. 2022. Biochar increases soil carbon pools: Evidence from a global meta-analysis. Journal of Environmental Management305, 114403.

Chen J, Li S Q, Li C, Wang H, Geng Y J, Kong D L, Liu S W, Zou J W. 2019. Post-seasonal effects of water-saving rice production regimes on N2O emissions in an annual rice-barley rotation system. Catena182, 104112.

Cheng Y, Elrys A S, Merwad A R M, Zhang H M, Chen Z X, Zhang J B, Cai Z C, Müller C. 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology56, 3791–3800.

Congreves K, Voroney R, O’Halloran I, Van Eerd L. 2013. Broccoli residue-derived nitrogen immobilization following amendments of organic carbon: An incubation study. Canadian Journal of Soil Science93, 23–31.

Cui P Y, Fan F L, Yin C, Song A L, Huang P R, Tang Y J, Zhu P, Peng C, Li T Q, Wakelin S A, Liang Y C. 2016. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology and Biochemistry93, 131–141.

Dai H L, Han T, Sun T S, Zhu H, Wang X G, Lu X W. 2021. Nitrous oxide emission during denitrifying phosphorus removal process: A review on the mechanisms and influencing factors. Journal of Environmental Management278, 111561.

Domeignoz-Horta L A, Philippot L, Peyrard C, Bru D, Breuil M C, Bizouard F, Justes E, Mary B, Leonard J, Spor A. 2018. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Global Change Biology24, 360–370.

Eagle A J, Olander L P, Locklier K L, Heffernan J B, Bernhardt E S. 2017. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: A meta-analysis. Soil Science Society of America Journal81, 1191–1202.

Friedl J, De Rosa D, Rowlings D W, Grace P R, Müller C, Scheer C. 2018. Dissimilatory nitrate reduction to ammonium (DNRA), not denitrification dominates nitrate reduction in subtropical pasture soils upon rewetting. Soil Biology and Biochemistry125, 340–349.

Guo J J, Ling N, Chen H, Zhu C, Kong Y L, Wang M, Shen Q R, Guo S W. 2017. Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: Evidence from a long-term field experiment. Soil Biology and Biochemistry115, 403–414.

He J Z, Hu H W, Zhang L M. 2012. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry55, 146–154.

Heil J, Vereecken H, Brüggemann N. 2016. A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science67, 23–39.

Islam S M, Gaihre Y K, Islam M R, Akter M, Al Mahmud A, Singh U, Sander B O. 2020. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Science of the Total Environment734, 139382.

Ji L F, Wu Z D, You Z M, Yi X Y, Ni K, Guo S W, Ruan J Y. 2018. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. AgricultureEcosystems & Environment268, 124–132.

Jia Z J, Hu X J, Xia W W, Fornara D, Nannipieri P, Tiedje J. 2019. Community shift of microbial ammonia oxidizers in air-dried rice soils after 22 years of nitrogen fertilization. Biology and Fertility of Soils55, 419–424.

Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. 2006. Abundance of narGnirSnirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Applied and Environmental Microbiology72, 5957–5962.

Kong D L, Li S Q, Jin Y G, Wu S, Chen J, Hu T, Wang H, Liu S W, Zou J W. 2019. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma347, 233–243.

Kuroiwa M, Koba K, Isobe K, Tateno R, Nakanishi A, Inagaki Y, Toda H, Otsuka S, Senoo K, Suwa Y. 2011. Gross nitrification rates in four Japanese forest soils: Heterotrophic versus autotrophic and the regulation factors for the nitrification. Journal of Forest Research16, 363–373.

Lawrence N C, Tenesaca C G, Van Loocke A, Hall S J. 2021. Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences of the United States of America118, e2112108118.

Lazcano C, Zhu-Barker X, Decock C. 2021. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms9, 983.

Li Y H, Shahbaz M, Zhu Z K, Deng Y W, Tong Y Y, Chen L, Wu J S, Ge T D. 2021. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biology and Biochemistry153, 108106.

Li Y J, Zheng Q, Yang R, Zhuang S, Lin W, Li Y Z. 2021. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. Journal of Cleaner Production326, 129442.

Liao B, Cai T C, Wu X, Luo Y, Liao P, Zhang B C, Zhang Y T, Wei G F, Hu R G, Luo Y F, Cui Y L. 2023. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. Journal of Environmental Management344, 118372.

Linquist B, Van Groenigen K J, Adviento-Borbe M A, Pittelkow C, Van Kessel C. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology18, 194–209.

Linton N F, Machado P V F, Deen B, Wagner-Riddle C, Dunfield K E. 2020. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biology and Biochemistry149, 107917.

Liu B B, Mørkved P T, Frostegård Å, Bakken L R. 2010. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiology Ecology72, 407–417.

Liu X, Mao P N, Li L H, Ma J. 2019. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Science of the Total Environment656, 969–976.

Lu M Z, Cheng S L, Fang H J, Yang Y, Guo Y F, Li Y N, Zhou Y. 2022. Contrasting response of soil N2O release to ammonium, nitrate, and urea addition rates is determined by substrate availability and microbial community abundance and composition. European Journal of Soil Biology109, 103393.

Lucas R M, Norval M, Neale R E, Young A R, De Gruijl F R, Takizawa Y, Van der Leun J C. 2015. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochemical & Photobiological Sciences14, 53–87.

Lucas-Borja M E, de Las Heras J, Navarro D M, González-Romero J, Pena-Molina E, Navidi M, Fajardo-Cantos Á, Mellado I M, Plaza-Alvarez P A, Carra B G. 2022. Short-term effects of prescribed fires with different severity on rainsplash erosion and physico-chemical properties of surface soil in Mediterranean forests. Journal of Environmental Management322, 116143.

Ma Y H, Gu D J, Liu L J, Wang Z Q, Zhang H, Yang J C. 2014. Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw. Rice Science21, 224–232.

Mandal N, Dwivedi B S, Meena M C, Singh D, Datta S P, Tomar R K, Sharma B M. 2013. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea–wheat cropping system. Field Crops Research154, 178–187.

Martins C S, Nazaries L, Macdonald C A, Anderson I C, Singh B K. 2015. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biology and Biochemistry86, 5–16.

Meijide A, Gruening C, Goded I, Seufert G, Cescatti A. 2017. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. AgricultureEcosystems & Environment238, 168–178.

Muema E K, Cadisch G, Musyoki M K, Rasche F. 2016. Dynamics of bacterial and archaeal amoA gene abundance after additions of organic inputs combined with mineral nitrogen to an agricultural soil. Nutrient Cycling in Agroecosystems104, 143–158.

Mustafa A, Minggang X, Shah S A A, Abrar M M, Sun N, Baoren W, Cai Z J, Saeed Q, Naveed M, Mehmood K. 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management270, 110894.

Ouyang Y, Evans S E, Friesen M L, Tiemann L K. 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biology and Biochemistry127, 71–78.

Peyron M, Bertora C, Pelissetti S, Said-Pullicino D, Celi L, Miniotti E, Romani M, Sacco D. 2016. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. AgricultureEcosystems & Environment232, 17–28.

Philippot L, Andert J, Jones C M, Bru D, Hallin S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology17, 1497–1504.

Philippot L, Hallin S, Schloter M. 2007. Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy96, 249–305.

Prosser J I, Hink L, Gubry-Rangin C, Nicol G W. 2020. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology26, 103–118.

Raza S, Miao N, Wang P Z, Ju X T, Chen Z J, Zhou J B, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology26, 3738–3751.

Sapkota A, Haghverdi A, Avila C C, Ying S C. 2020. Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Systems4, 20.

Shaaban M, Peng Q, Bashir S, Wu Y, Younas A, Xu X, Rashti M R, Abid M, Zafar-ul-Hye M, Núñez-Delgado A. 2019. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil. Journal of Environmental Management250, 109535.

Stein L Y. 2020. The long-term relationship between microbial metabolism and greenhouse gases. Trends in Microbiology28, 500–511.

Su Q X, Domingo-Félez C, Jensen M M, Smets B F. 2019. Abiotic nitrous oxide (N2O) production is strongly pH dependent, but contributes little to overall N2O emissions in biological nitrogen removal systems. Environmental Science & Technology53, 3508–3516.

Su X X, Wen T, Wang Y M, Xu J S, Cui L, Zhang J B, Xue X M, Ding K, Tang Y J, Zhu Y G. 2021. Stimulation of N2O emission via bacterial denitrification driven by acidification in estuarine sediments. Global Change Biology27, 5564–5579.

Sun R B, Guo X S, Wang D Z, Chu H Y. 2015. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Applied Soil Ecology95, 171–178.

Tang S T, Rao Y, Huang S L, Xu Y, Zeng K Y, Liang X, Ling Q J, Liu K H, Ma J M, Yu F M. 2023. Impact of environmental factors on the ammonia-oxidizing and denitrifying microbial community and functional genes along soil profiles from different ecologically degraded areas in the Siding mine. Journal of Environmental Management326, 116641.

Tao R, Wakelin S A, Liang Y C, Hu B W, Chu G X. 2018. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Science of the Total Environment612, 739–749.

Tian H Q, Xu R T, Canadell J G, Thompson R L, Winiwarter W, Suntharalingam P, Davidson E A, Ciais P, Jackson R B, Janssens-Maenhout G. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.

Van Zwieten L, Singh B P, Kimber S W L, Murphy D V, Macdonald L M, Rust J, Morris S. 2014. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. AgricultureEcosystems & Environment191, 53–62.

Verhoeven E, Decock C, Barthel M, Bertora C, Sacco D, Romani M, Sleutel S, Six J. 2018. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biology and Biochemistry120, 58–69.

Wang H Y, Yang T T, Chen J, Bell S M, Wu S, Jiang Y, Sun Y N, Zeng Y H, Zeng Y J, Pan X H. 2022. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crops Research281, 108489.

Wang J, Sun N, Xu M G, Wang S Q, Zhang J B, Cai Z C, Cheng Y. 2019. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil. Geoderma337, 710–717.

Wang J, Zhu B, Zhang J b, Müller C, Cai Z C. 2015. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry91, 222–231.

Wu K K, Gong P, Zhang L L, Wu Z J, Xie X S, Yang H Z, Li W T, Song Y C, Li D P. 2019. Yield-scaled N2O and CH4 emissions as affected by combined application of stabilized nitrogen fertilizer and pig manure in rice fields. PlantSoil and Environment65, 497–502.

Yang D, Xiao X, He N, Zhu W B, Liu M D, Xie G X. 2020. Effects of reducing chemical fertilizer combined with organic amendments on ammonia-oxidizing bacteria and archaea communities in a low-fertility red paddy field. Environmental Science and Pollution Research27, 29422–29432.

Yin C, Fan F L, Song A L, Li Z J, Yu W T, Liang Y C. 2014. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS- and nirK-denitrifying bacterial community. European Journal of Soil Biology65, 47–56.

Yu K, Fang X T, Zhang Y H, Miao Y C, Liu S W, Zou J W. 2021. Low greenhouse gases emissions associated with high nitrogen use efficiency under optimized fertilization regimes in double-rice cropping systems. Applied Soil Ecology160, 103846.

Zhang L M, Hu H W, Shen J P, He J Z. 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal6, 1032–1045.

Zhang X Y, Fang Q C, Zhang T, Ma W Q, Velthof G L, Hou Y, Oenema O, Zhang F S. 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26, 888–900.

Zhou S, Sun H F, Bi J G, Zhang J N, Riya S, Hosomi M. 2020. Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing. Soil & Tillage Research200, 104610.

Zhou W, Ma Q X, Wu L, Hu R G, Jones D L, Chadwick D R, Jiang Y B, Wu Y P, Xia X G, Yang L. 2022. The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. AgricultureEcosystems & Environment326, 107806.

Zou J W, Huang Y, Jiang J Y, Zheng X H, Sass R L. 2005. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles19, GB2021.

No related articles found!
No Suggested Reading articles found!