Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Synergistic incorporation of nano-pesticides into biological control: excellent biocompatibility with parasitic wasps (Aphidius colemani) can achieve efficient aphid control

Shangyuan Wu1*, Qinhong Jiang1*, Leiyang Li1, Jia He2, Ying Wei1, Meizhen Yin3, Jie Shen1, Hu Li1#, Shuo Yan1#

1 State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
2 Ningxia Key Lab of Plant Disease and Pest Control, Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
3 State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

 Highlights 

Star polycation (SPc) shows negligible toxicity in parasitic wasps (Aphidius colemani).

Parasitic waspshow high tolerance, and the clothianidin/SPc complex causes no adverse impacts.

Co-application of the clothianidin/SPc complex and parasitoidachieves excellent cooperative pest management.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

化学农药与生物天敌协同应用在病虫害防控中面临一个根本性挑战:如何在确保防控效果的同时实现生态安全。近年来,纳米技术作为一种新兴策略,在提升农药性能、减少农药残留和缓解环境污染方面展现出广阔前景。本研究构建了一种基于星型阳离子聚合物(SPc)负载噻虫胺的高效纳米农药,并与广泛应用的寄生蜂粗脊蚜茧蜂(Aphidius colemani )联合施用,实现了虫害的协同防控。实验表明,SPc 在工作浓度下对寄生蜂的羽化率和存活率无显著影响而在极高浓度下经饲喂法处理,显著上调了与核糖体蛋白及能量代谢相关的多个基因,导致代谢失衡,进而引发寄生蜂死亡。SPc 可通过氢键和范德华力与噻虫胺自发形成复合物,将粒径由6554.87 nm 缩小 467.84 nm并且,噻虫胺/SPc 复合物对蚜虫(Myzus persicae)的毒力提升了16–28%,同时对寄生蜂的羽化和寄生几乎无不良影响。最终,该复合物与寄生蜂协同用可实现对蚜虫高达80%的致死率,展现出快速抑制害虫种群数量和可持续控制的双重优势。本研究提出了一种基于纳米农药与天敌协同施用的病虫害治理策略,有助于实现农业生态系统的长期稳定与平衡。



Abstract  

The synergistic use of chemical pesticides and biological agents poses the fundamental challenge of balancing control efficacy with ecological safety. In recent years, nanotechnology has emerged as a promising strategy for improving pesticide performance while reducing pesticide residues and alleviating environmental contamination. Herein, we developed an efficient nano-pesticide based on star polycation (SPc) loaded with clothianidin, which was co-applied with a widely used parasitic wasp (Aphidius colemani) to achieve synergistic pest management. SPc at the working concentration displayed no significant impact on the eclosion or survival of parasitic wasps, whereas the oral feeding of SPc at an extremely high concentration significantly up-regulated several genes related to ribosomal protein and energy metabolism, leading to metabolic imbalance and subsequent mortality of the parasitic wasps. The SPc could load clothianidin via hydrogen bonding and Van der Waals forces, and this spontaneous complexation achieved a reduction in particle size from 6554.87 to 467.84 nm. Importantly, the clothianidin/SPc complex exhibited a 16–28% increase in insecticidal activity against green peach aphids (Myzus persicae), while showing minimal adverse impacts on the eclosion and parasitism of parasitic wasps. Finally, co-application of the clothianidin/SPc complex with parasitic wasps achieved up to 80% mortality in green peach aphids, with the promising advantages of rapid pest suppression and sustainable control. This study proposes a synergetic pest management strategy based on nano-pesticides and natural enemies, which is beneficial for maintaining long-term agricultural ecological balance.

Keywords:  biological control       cooperative control       nano-pesticide       parasitic wasp       pest management  
Online: 18 June 2025  
Fund: 

This research was funded by the Key R & D Program of Ningxia Hui Autonomous Region, China (2024BBF02010), the Technology Innovation Guidance Project of Ningxia Academy of Agriculture and Forestry Sciences, China (NKYG-24-18), the China National Tobacco Corporation of Science and Technology Major Projects (110202401012 [LS-02]) and the 2115 Talent Development Program of China Agricultural University.

About author:  #Correspondence Hu Li, E-mail: tigerleecau@hotmail.com; Shuo Yan, E-mail: yanshuo2011@foxmail.com * These authors contributed equally to this study.

Cite this article: 

Shangyuan Wu, Qinhong Jiang, Leiyang Li, Jia He, Ying Wei, Meizhen Yin, Jie Shen, Hu Li, Shuo Yan. 2025. Synergistic incorporation of nano-pesticides into biological control: excellent biocompatibility with parasitic wasps (Aphidius colemani) can achieve efficient aphid control. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.021

Adisa I O, Pullagurala V L R, Peralta-Videa J R, Dimkpa C O, Elmer W H, Gardea-Torresdey J L, White J C. 2019. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science (Nano), 6, 2002-2030.

Anger A M, Armache J, Berninghausen O, Habeck M, Subklewe M, Wilson D N, Beckmann R. 2013. Structures of the human and Drosophila 80S ribosome. Nature, 497, 80-85.

Baggen L R, Gurr G M. 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control, 11, 9-17.

Balaji A P B, Sastry T P, Manigandan S, Mukherjee A, Chandrasekaran N. 2017. Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Science of the Total Environment, 579, 190-201.

Bonmatin J M, Giorio C, Girolami V, Goulson D, Kreutzweiser D P, Krupke C, Liess M, Long E, Marzaro M, Mitchell E A D, Noome D A, Simon-Delso N, Tapparo A. 2015. Environmental fate and exposure; Neonicotinoids and fipronil. Environmental Science and Pollution Research, 22, 35-67.

Brimacombe R. 1992. The ribosome: Function, organization and structure. Advances in Molecular and Cell Biology4, 237-255.

Cenatiempo Y, Deville F, Dondon J, Grunberg-Manago M, Sacerdot C, Hershey J W B, Hansen H F, Clark B F C, Kjeldgaard M. 1987. The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia coli. Biochemistry, 26, 5070-5076.

Colinet H, Hance T, Vernon P. 2006. Water relations, fat reserves, survival, and longevity of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae). Environmental Entomology, 35, 228-236.

Deng Y, Jiang X, Zhao H, Yang S, Gao J, Wu Y, Diao Q, Hou C. 2021. Microplastic polystyrene ingestion promotes the susceptibility of honeybee to viral infection. Environmental Science & Technology, 55, 11680-11692.

Dong M, Chen D, Che L, Gu N, Yin M, Du X, Shen J, Yan S. 2022. Biotoxicity evaluation of a cationic star polymer on a predatory ladybird and cooperative pest control by polymer-delivered pesticides and ladybird. ACS Applied Materials & Interfaces, 14, 6083-6092.

Van Driesche R G, Lyon S, Sanderson J P, Bennett K C, Stanek E J, Zhang R. 2008. Greenhouse trials of Aphidius colemani (Hymenoptera: Braconidae) banker plants for control of aphids (Hemiptera: Aphididae) in greenhouse spring floral crops. The Florida Entomologist, 91, 583-591.

Gao Z, Tan J, Sun Y, Jiang X. 2025. Size effect of ZIF-8 based nanocarrier pesticide delivery system on targeted release and insecticidal activity. Pest Management Science, 81, 966-977.

Gnipová A, Aubrtová K, Panicucci B, Horváth A, Lukeš J, Zíková A. 2015. The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist Trypanosoma brucei. Eukaryotic Cell, 14, 297-310.

Gomes A, Sengupta J, Datta P, Ghosh S, Gomes A. 2016. Physiological interactions of nanoparticles in energy metabolism, immune function and their biosafety: A review. Journal of Nanoscience and Nanotechnology, 16, 92-116.

Helenius J. 1990. Effect of epigeal predators on infestation by the aphid Rhopalosiphum padi and on grain yield of oats in monocrops and mixed intercrops. Entomologia Experimentalis et Applicata, 54, 225-236.

Hou R, Li C, Tan Y, Wang Y, Huang S, Zhao C, Zhang Z. 2023. Eco-friendly O-carboxymethyl chitosan base chlorfenapyr nanopesticide for effective pest control and reduced toxicity to honey bees. International Journal of Biological Macromolecules, 224, 972-983.

Huang X, Ni X, Li H, Wei Y, Wang Z, Zhen C A, Yin M, Shen J, Shi W, Zhang Y, Yan S. 2024. Synergistic mechanism of botanical pesticide camptothecin encapsulated in a nanocarrier against fall armyworm: Enhanced stability and amplified growth suppression. Ecotoxicology and Environmental Safety, 284, 116900.

Iavicoli I, Leso V, Beezhold D H, Shvedova A A. 2017. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96-111.

Jiang Q, Lin Z, Peng M, Zhou B, Liu E, Li Z, Wei Y, Yang H, Song F, Yin M, Shen J, Yan S. 2023. A nano-delivery system enhances the stomach toxicity of methoxyfenozide against Spodoptera litura by suppressing the synthesis of insect cuticle protein. ACS Applied Nano Materials, 6, 13524-13532.

Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. 2024. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nature Communications, 15, 8509.

Jiang Y, Shen Y, Wu P. 2008. Self-assembly of multilayer films containing gold nanoparticles via hydrogen bonding. Journal of Colloid and Interface Science, 319, 398-405.

El Khoury S, Giovenazzo P, Derome N. 2022. Endogenous honeybee gut microbiota metabolize the pesticide clothianidin. Microorganisms, 10, 493.

Kramer G, Boehringer D, Ban N, Bukau B. 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural & Molecular Biology, 16, 589-597.

Lenteren J V. 1988. Biological and integrated pest control in greenhouses. Annual Review of Entomology, 33, 239-269.

Li J, Qian J, Xu Y, Yan S, Shen J, Yin M. 2019. A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management. ACS Sustainable Chemistry & Engineering, 7, 6316-6322.

Li Z, Su L, Wang H, An S, Yin X. 2020. Physicochemical and biological properties of nanochitin—abamectin conjugate for Noctuidae insect pest control. Journal of Nanoparticle Research, 22, 286.

Li Z, Wang H, An S, Yin X. 2021. Nanochitin whisker enhances insecticidal activity of chemical pesticide for pest insect control and toxicity. Journal of Nanobiotechnology, 19, 49.

Lin M, Vasseur L, Yang G, Gurr G M, You M. 2016. Avoidance, escape and microstructural adaptations of the tea green leafhopper to water droplets. Scientific Reports, 6, 37026.

Liu S, Peng W, Qu Y, Xu D, Li H, Song D, Duan H, Yang X. 2014. Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group. Chinese Chemical Letters, 25, 1017-1020.

Liu X, Vinson D, Abt D, Hurt R H, Rand D M. 2009. Differential toxicity of carbon nanomaterials in Drosophila: Larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environmental Science & Technology, 43, 6357-6363.

Longley M. 1999. A review of pesticide effects upon immature aphid parasitoids within mummified hosts. International Journal of Pest Management, 45, 139-145.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Lu C, Lv Y, Kou G, Liu Y, Liu Y, Chen Y, Wu X, Yang F, Luo J, Yang X. 2022. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 243, 113993.

Luo D, Yan C, Wang T. 2015. Interparticle forces underlying nanoparticle self-assemblies. Small, 11, 5984-6008.

Milon P, Carotti M, Konevega A L, Wintermeyer W, Rodnina M V, Gualerzi C O. 2010. The ribosome‐bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. Embo Reports, 11, 312-316.

Mörtl M, Vehovszky Á, Klátyik S, Takács E, Győri J, Székács A. 2020. Neonicotinoids: Spreading, translocation and aquatic toxicity. International Journal of Environmental Research and Public Health, 17, 2006.

Nagasaka K, Takahasi N, Okabayashi T. 2010. Impact of secondary parasitism on Aphidius colemani in the banker plant system on aphid control in commercial greenhouses in Kochi, Japan. Applied Entomology and Zoology, 45, 541-550.

Neale P A, Braun G, Brack W, Carmona E, Gunold R, König M, Krauss M, Liebmann L, Liess M, Link M, Schäfer R B, Schlichting R, Schreiner V C, Schulze T, Vormeier P, Weisner O, Escher B I. 2020. Assessing the mixture effects in in vitro bioassays of chemicals occurring in small agricultural streams during rain events. Environmental Science & Technology, 54, 8280-8290.

Pan Y, Zhao R, Fu D, Yu C, Pan C, Zhou W, Chen W. 2022. Assessment of suitable reference genes for qRT-PCR normalization in Eocanthecona furcellata (Wolff). Insect, 13, 773.

Prete M C, de Oliveira F M, Tarley C R T. 2017. Assessment on the performance of nano-carbon black as an alternative material for extraction of carbendazim, tebuthiuron, hexazinone, diuron and ametryn. Journal of Environmental Chemical Engineering, 5, 93-102.

Priyadarsini S, Sahoo S K, Sahu S, Mukherjee S, Hota G, Mishra M. 2019. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environmental Science and Pollution Research, 26, 19560-19574.

Ross P D, Subramanian S. 1981. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20, 3096-3102.

Santos C D R D, Sampaio M V, Lau D, Redaelli L R, Jahnke S M, Pivato J, Carvalho F J. 2019. Taxonomic status and population oscillations of Aphidius colemani Species Group (Hymenoptera: Braconidae) in southern brazil. Neotropical Entomology, 48, 983-991.

Shan Y, Cao L, Xu C, Zhao P, Cao C, Li F, Xu B, Huang Q. 2019. Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction. International Journal of Molecular Sciences, 20, 1330.

Sparks T C, Bryant R J. 2021. Crop protection compounds-trends and perspective. Pest Management Science, 77, 3608-3616.

Stara J, Ourednickova J, Kocourek F. 2011. Laboratory evaluation of the side effects of insecticides on Aphidius colemani (Hymenoptera: Aphidiidae), Aphidoletes aphidimyza (Diptera: Cecidomyiidae), and Neoseiulus cucumeris (Acari: Phytoseidae). Journal of Pest Science, 84, 25-31.

Stary P. 1975. Aphidius colemani viereck: Its taxonomy, distribution and host range (Hymenoptera, Aphidiidae). Acta Entomologica Bohemoslovaca, 72, 156-163.

Takahashi Y, Kojimoto T, Nagaoka H, Takagi Y, Oikawa M. 2005. Tests for evaluating the side effects of chlorothalonil (TPN) and spinosad on the parasitic wasp (Aphidius colemani). Journal of Pesticide Science, 30, 11-16.

Thabet A F, Boraei H A, Galal O A, El-Samahy M F M, Mousa K M, Zhang Y Z, Tuda M, Helmy E A, Wen J, Nozaki T. 2021. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific Reports, 11, 14484.

Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung D T. 2021. Agriculture development, Pesticide application and its impact on the environment. International Journal of Environmental Research and Public Healt, 18, 1112.

Uneme H. 2011. Chemistry of clothianidin and related compounds. Journal of Agricultural and Food Chemistry, 59, 2932-2937.

Vishnu M, Kannan M, Soundararajan R P, Suganthi A, Subramanian A, Senthilkumar M, Rameash K, Madesh K, Govindaraju K. 2024. Nano-bioformulations: Emerging trends and potential applications in next generation crop protection. Environmental Science (Nano), 11, 2831-2860.

Wang R, Yoshida K, Toki T, Sawada T, Uechi T, Okuno Y, Sato-Otsubo A, Kudo K, Kamimaki I, Kanezaki R, Shiraishi Y, Chiba K, Tanaka H, Terui K, Sato T, Iribe Y, Ohga S, Kuramitsu M, Hamaguchi I, Ohara A, et al. 2015. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. British Journal of Haematology, 168, 854-864.

Wang X, Wang J, Cao X, Wang F, Yang Y, Wu S, Wu Y. 2019. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China. Pest Management Science, 75, 591-597.

Wang Y, Xie Y, Jiang Q, Chen H, Ma R, Wang Z, Yin M, Shen J, Yan S. 2023. Efficient polymer-mediated delivery system for thiocyclam: Nanometerization remarkably improves the bioactivity toward green peach aphids. Insect Science, 30, 2-14.

Wu S, Jiang Q, Huang C, Yang H, Zhang C, Yin M, Shen J, Yan S, Li H. 2024. Construction of a nontoxic nano-pesticide and its co-application with natural predators for perfect cooperative pest management: An innovative strategy for pesticide reduction. Environmental Science (Nano), 11, 1902-1914.

Yan S, Hu Q, Jiang Q, Chen H, Wei J, Yin M, Du X, Shen J. 2021. Simple osthole/nanocarrier pesticide efficiently controls both pests and diseases fulfilling the need of green production of strawberry. ACS Applied Materials & Interfaces, 13, 36350-36360.

Yan S, Hu Q, Li J, Chao Z, Cai C, Yin M, Du X, Shen J. 2019. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides. ACS Sustainable Chemistry & Engineering, 7, 17406-17413.

Yan S, Li N, Guo Y, Chen Y, Ji C, Yin M, Shen J, Zhang J. 2022. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. Journal of Nanobiotechnology, 20, 515.

Zeng X, He Y, Wu J, Tang Y, Gu J, Ding W, Zhang Y. 2016. Sublethal effects of cyantraniliprole and imidacloprid on feeding behavior and life table parameters of Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology, 109, 1595-1602.

Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R. 2020. Nano-Biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68, 1935-1947.

Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z. 2018. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 66, 6504-6512.


[1] Jiaxing Wei, Hong Yan, Jie Ren, Guangyue Li, Bo Zhang, Xuenong Xu.

Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control [J]. >Journal of Integrative Agriculture, 2024, 23(3): 948-959.

[2] Qin Ma, Zizhen Fan, Ping Wang, Siya Ma, Jian Wen, Fengqin Cao, Xianwu Lin, Rihui Yan.

Silencing transformer and transformer-2 in Zeugodacus cucurbitae causes defective sex determination with inviability of most pseudomales [J]. >Journal of Integrative Agriculture, 2024, 23(3): 938-947.

[3] XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1722-1730.
[4] ZHAN Bin-hui, YANG Xiu-ling, Steven A. LOMMEL, ZHOU Xue-ping. Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3445-3455.
[5] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[6] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[7] DONG Suo-meng, ZHOU Shao-qun. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3456-3466.
[8] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
[9] LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 829-839.
[10] CHEN Zu-wen, YANG Yan-chao, ZHANG Jian-feng, JIN Ming-hui, XIAO Yu-tao, XIA Zhi-chao, LIU Yuan-yuan, YU Sai-zhen, YANG Yong-bo, WANG Yuan, LI Yi, LIU Kai-yu. Susceptibility and tissue specificity of Spodoptera frugiperda to Junonia coenia densovirus[J]. >Journal of Integrative Agriculture, 2021, 20(3): 840-849.
[11] CHI Bao-jie, ZHANG Dong-mei, DONG He-zhong. Control of cotton pests and diseases by intercropping: A review[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3089-3100.
[12] Fisayo Y. DARAMOLA, Osarenkhoe O. OSEMWEGIE, Stephen O. OWA, Samuel B. ORISAJO, Evbuomwan IKPONMWOSA, Elizabeth T. ALORI. Isolation and molecular characterization of entomopathogenic nematode, Heterorhabditis sp. from an arable land in Nigeria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2706-2715.
[13] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[14] Silvia I. RONDON. Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change[J]. >Journal of Integrative Agriculture, 2020, 19(2): 316-324.
[15] Oluwashola OLANIYAN, Neus RODRíGUEZ-GASOL, Nathalie CAYLA, Eleonor MICHAUD, Steve D. WRATTEN.
Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 338-349.
No Suggested Reading articles found!