Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (12): 3445-3455    DOI: 10.1016/j.jia.2022.08.050
Special Focus: Integrated Pest Management and Plant Health Advanced Online Publication | Current Issue | Archive | Adv Search |
Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management

ZHAN Bin-hui1, YANG Xiu-ling1, Steven A. LOMMEL2, ZHOU Xue-ping1

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Agriculture and Life Sciences, North Carolina State University, Raleigh 27695, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米作为重要的粮食作物和工业原料,几个世纪以来一直被人们广泛种植。玉米致命性坏死病(maize lethal necrosis diseaseMLND)是一种严重制约玉米生产的病毒,于1971年首次在秘鲁被发现,近年来在肯尼亚、卢旺达、刚果等非洲国家对玉米的生产造成了毁灭性危害,尤其给小农户造成了严重的经济损失。MLND是由番茄丛矮病毒科玉米褪绿斑驳病毒属的玉米褪绿斑驳病毒和马铃薯Y病毒科的1种或多种病毒复合侵染引起的,危害玉米引起发病植株的叶片产生褪绿、斑驳到局部坏死等症状,严重时叶片枯死甚至全株死亡,严重影响玉米产量甚至造成绝收。深入了解MLND的病原、加强MLND病原的早期检测以及有效防控对切实阻截MLND的扩散蔓延具有重要意义。本文就引起MLND的病原及其基因组结构与功能、分布与危害、传播扩散方式进行了综述探讨了已经建立的基于病毒单克隆抗体的酶联免疫吸附等血清学方法、基于核酸检测的PCR和逆转录-环介导等温扩增等分子生物学方法和高通量测序等技术在MLND病原早期检测中的应用提出了利用种子检疫、推广健康种子、作物轮作、种植抗病或耐病品种等经济、环境友好型的防治措施有效控制MLND



Abstract  Maize (Zea mays), as a staple food and an important industrial raw material, has been widely cultivated for centuries especially by smallholder farmers. Maize lethal necrosis disease (MLND) is a serious disease infecting maize, which caused devastating damage in the African region recently. MLND is induced by co-infection of maize chlorotic mottle virus and one of several cereal-infecting viruses in the Potyviridae family, with the symptoms ranging from chlorotic mottle to plant death at different infection stages. Integrated pest management for MLND needs strengthening detection, focusing on prevention and effective control. Early detection system of MLND has been successfully established by serological methods, nucleic acid-based methods, next-generation sequencing et al. The practices, such as using certified seeds, sanitary measures, crop rotation, tolerant or resistant varieties etc., have been considered as the effective, economical and eco-friendly way to prevent and control MLND.


Keywords:  Maize lethal necrosis disease       maize chlorotic mottle virus       integrated pest management  
Received: 24 August 2021   Accepted: 27 January 2022
Fund: 

This work is funded by the National Natural Science Foundation of China (31930089) and the Food and Agriculture Organization of the United Nations.

About author:  Received 24 August, 2021 Accepted 27 January, 2022 ZHAN Bin-hui, Tel: +86-10-62815615, E-mail: binhuizhan@126.com; Correspondence YANG Xiu-ling, Tel: +86-10-62816620, E-mail: yangxiuling@caas.cn; ZHOU Xue-ping, Tel: +86-10-62815906, E-mail: zzhou@zju.edu.cn

Cite this article: 

ZHAN Bin-hui, YANG Xiu-ling, Steven A. LOMMEL, ZHOU Xue-ping. 2022. Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management. Journal of Integrative Agriculture, 21(12): 3445-3455.

Adams I P, Fox A. 2016. Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. In: Wang A, Zhou X, eds., Current Research Topics in Plant Virology. Springer, Cham, Switzerland.
Adams I P, Harju V A, Hodges T, Hany U, Skelton A, Rai S, Deka M K, Smith J, Fox A, Uzayisenga B, Ngaboyisonga C, Uwumukiza B, Rutikanga A, Rutherford M, Ricthis B, Phiri N, Boonham N. 2014. First report of maize lethal necrosis disease in Rwanda. New Disease Reports, 29, 22.
Adams I P, Miano D W, Kinyua Z M, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U. 2013. Use of next-generation sequencing for the identification and characterization of maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology, 62, 741–749.
Adams M J, Antoniw J F, Fauquet C M. 2005. Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150, 459–479.
Awata L A O, Ifie B E, Danquah E, Jumbo M B, Suresh L M, Gowda M, Marchelo-Dragga P W, Olsen M S, Shorinola O, Yao N K, Boddupalli P M, Tongoona P B. 2021. Introgression of maize lethal necrosis resistance quantitative trait loci into susceptible maize populations and validation of the resistance under field conditions in Naivasha, Kenya. Frontiers in Plant Science, 12, 649308.
Balducchi A J, Rufener II G K, Mowers R P. 1996. Corn lethal necrosis resistant maize and the production thereof. U.S. Patent US05563318A. 1996-10-08.
Beyene Y, Gowda M, Suresh L M, Mugo S, Olsen M, Oikeh S O, Juma C, Tarekegne A, Prasanna B M. 2017. Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica, 213, 224.
Bockelman D L, Claflin L E, Uyemoto J K. 1982. Host range and seed transmission studies of maize chlorotic mottle virus in grasses and corn. Plant Disease, 66, 216–218.
Boddupalli P, Suresh L, Mwatuni F, Beyene Y, Makumbi D, Gowda M, Olsen M, Hodson D, Worku M, Mezzalama M, Molnar T, Dhugga K S, Wangai A, Gichuru L, Angwenyi S, Alemayehu Y, Hansen J G, Lassen P. 2020. Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Research, 282, 197943.
Brault V, Uzest M, Monsion B, Jacquot E, Blanc S. 2010. Aphids as transport devices for plant viruses. Comptes Rendus Biologies, 333, 524–538.
Cabanas D, Watanabe S, Higashi C H V, Bressan A. 2013. Dissecting the mode of maize chlorotic mottle virus transmission (Tombusviridae: Machlomovirus) by Frankliniella williamsi (Thysanoptera: Thripidae). Journal of Economic Entomology, 106, 16–24.
Carrera-Martinez H, Lozoya-Saldana H, Mendoza-Zamora C, Alvizo-Villasana H. 1989. Enzyme immunosorbent assay (ELISA) in the identification and distribution of maize chlorotic mottle virus (MCMV) in the state of Mexico. Revista Mexicana de Fitopatología, 7, 20–25. (in Spainish)
Castillo J, Hebert T. 1974. A new virus disease of maize in Peru. Fitopatologia, 9, 79–84.
Chen L, Jiao Z, Liu D, Liu X, Fan Z. 2017. One-step reverse transcription loop-mediated isothermal amplification for the detection of maize chlorotic mottle virus in maize. Journal of Virological Methods, 240, 49–53.
Chung Y W, Miller W A, Atkins J F, Firth A E. 2008. An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 105, 5897–5902.
Delgadillo Sánchez F, Pons Hernández J L, Torreón Ibarra A D. 1994. Seed transmission of maize chlorotic mottle virus. Revista Mexicana De Fitopatología, 12, 7–10.
Deng T C, Chou C M, Chen C T, Tsai C H, Lin F C. 2014. First report of maize chlorotic mottle virus on sweet corn in Taiwan. Plant Disease, 98, 1748.
Doupnik Jr. B. 1979. Status of corn lethal necrosis - 1979 update. In: Proceedings of the 34th Annual Corn and Sorghum Research Conference. Chicago, USA.
Fentahun M, Feyissa T, Abraham A, Kwak H R. 2017. Detection and characterization of maize chlorotic mottle virus and sugarcane mosaic virus associated with maize lethal necrosis disease in Ethiopia: An emerging threat to maize production in the region. European Journal of Plant Pathology, 149, 1011–1017.
Gao X, Chen Y, Luo X, Du Z, Hao K, An M, Xia Z, Wu Y. 2021. Recombinase polymerase amplifification assay for simultaneous detection of maize chlorotic mottle virus and sugarcane mosaic virus in maize. ACS Omega, 6, 18008–18013.
Giolitti F, Herrera G, Madariaga M, Lenardon L. 2005. Detection of maize dwarf mosaic virus (MDMV) on maize in Chile. Maydica, 50, 101–104.
Goldberg K B, Brakke M K. 1987. Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain B. Phytopathology, 77, 162–167.
Gowda M, Beyene Y, Makumbi D, Semagn K, Olsen M S, Bright J M, Das B, Mugo S, Suresh L, Prasanna B M. 2018. Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Molecular Breeding, 38, 66.
Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen M S, Bright J M, Beyene Y, Prasanna B M. 2015. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theoretical & Applied Genetics, 128, 1957–1968.
Hansford C G. 1935. Sugarcane diseases in Uganda. East African Agricultural Journal, 1, 25–28.
Hilker F M, Allen L J S, Bokil V A, Briggs C J, Feng Z, Garrett K A, Gross L J, Hamelin F M, Jeger M J, Manore C A. 2017. Modeling virus coinfection to inform management of maize lethal necrosis in Kenya. Phytopathology, 107, 1095–1108.
Huang J, Wen G, Li M, Sun C, He Y. 2016. First report of maize chlorotic mottle virus naturally infecting sorghum and coix seed in China. Plant Disease, 100, 1955.
Ilbaǧi H, Çitir A, Yorganci Ü. 2005. Occurrence of virus infections on cereal crops and their identifications in the Trakya region of Turkey. Ztschrift Für Pflanzenkrankhten und Pflanzenschutz, 112, 313–320.
IPPC (Intergovernmental Panel on Climate Change). 2014. New Pest of Maize: Maize Lethal Necrosis an Uganda. Intergovernmental Panel on Climate Change Official Pest Report. No. UGA–01/2. Rome, Italy.
Jensen S, Wysong D, Ball E, Higley P. 1991. Seed transmission of maize chlorotic mottle virus. Plant Disease, 75, 497–498.
Jensen S G. 1985. Laboratory transmission of maize chlorotic mottle virus by three species of corn rootworms. Plant Disease, 69, 864–868.
Jiang X Q, Meinke L J, Wright R J, Wilkinson D R, Campbell J E. 1992. Maize chlorotic mottle virus in Hawaiian-grown maize: vector relations, host range and associated viruses. Crop Protection, 11, 248–254.
Jiao Y, Jiang J, An M, Xia Z, Wu Y. 2019. Recombinase polymerase amplification assay for rapid detection of maize chlorotic mottle virus in maize. Archives of Virology, 164, 2581–2584.
Jiao Z, Tian Y, Cao Y, Wang J, Zhan B, Zhao Z, Sun B, Guo C, Ma W, Liao Z, Zhang H, Zhou T, Xia Y, Fan Z. 2021. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. New Phytologist, 230, 1126–1141.
Karanja J, Derera J, Gubba A, Mugo S, Wangai A. 2018. Response of selected maize inbred germplasm to maize lethal necrosis disease and its causative viruses (sugarcane mosaic virus and maize chlorotic mottle virus) in Kenya. The Open Agriculture Journal, 12, 215–226.
King A M, Adams M J, Lefkowitz E J, Carstens E B. 2012. Virus Taxonomy Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, Waltham, USA.
Kiruwa F H, Feyissa T, Ndakidemi P A. 2016. Insights of maize lethal necrotic disease: A major constraint to maize production in East Africa. African Journal of Microbiology Research, 10, 271–279.
Klinkong T, Sutabutra T. 1983. A new virus disease of maize in Thailand. In: Proceedings of the International Maize Virus Disease Colloquium and Workshop. Ohio Agricultural Research and Development Center, Wooster, OH. 
Kumar P L, Jones A T, Waliyar F. 2004. Serological and Nucleic Acid Based Methods for the Detection of Plant Viruses. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh.
Kusia E S, Subramanian S, Nyasani J O, Khamis F, Pappu H R. 2015. First report of lethal necrosis disease associated with co-infection of finger millet with maize chlorotic mottle virus and sugarcane mosaic virus in Kenya. Plant Disease, 99, 899.
Leng P, Ji Q, Asp T, Frei U K, Ingvardsen C R, Xing Y, Studer B, Redinbaugh M, Jones M, Gajjar P, Liu S, Li F, Pan G, Xu M, Lübberstedt T. 2017. Auxin binding protein 1 reinforces resistance to sugarcane mosaic virus in maize. Molecular Plant, 10, 1357–1360.
Li L, Wang X, Zhou G. 2011. Effects of seed quality on the proportion of seed transmission for sugarcane mosaic virus in maize. Cereal Research Communications, 39, 257–266.
Lima J A A, Nascimento A K Q, Radaelli P, Purcifull D E. 2012. Serology applied to plant virology. In: Moslih Al-Moslih, ed., Serological Diagnosis of Certain Human, Animal and Plant Diseases. InTech, Rijeka, Croatia. [2020-6-2]. http://www.intechopen.com/books/serological-diagnosis-ofcertain-human-animal-and-plant-diseases/serology-applied-to-plant-virology
Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J. 2017. An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Molecular Plant, 10, 483–497.
López M, Bertolini E, Olmos A, Caruso P, Gorris M, Llop P, Penyalver R, Cambra M. 2003. Innovative tools for detection of plant pathogenic viruses and bacteria. International Microbiology, 6, 233–243.
Louie R 1980. Sugarcane mosaic virus in Kenya. Plant Disease, 64, 944–947.
Lukanda M, Owati A, Ogunsanya P, Valimunzigha K, Kumar P L. 2014. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Disease, 98, 1448.
Mahuku G, Lockhart B E, Wanjala B, Jones M W, Redinbaugh M G. 2015a. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology, 105, 956–965.
Mahuku G, Wangai A, Sadessa K, Teklewold A, Prasanna B M. 2015b. First report of maize chlorotic mottle virus and maize lethal necrosis on maize in Ethiopia. Plant Disease, 99, 1870.
Makumbi D, Wangai A. 2013. Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions. [2021-1-12]. http://www.cimmyt.org/en/where-we-work/africa/item/maize-lethalnecrosis-mln-disease-in-kenya-and-tanzania-facts-and-actions
Martin R R, James D, Lévesque C A. 2000. Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology, 38, 207–239.
Mekureyaw M F. 2017. Maize lethal necrosis disease: an emerging problem for maize production in eastern Africa. Journal of Plant Physiology and Pathology, 5, 4.
Montana J R. 1996. Serological characterization of wheat streak mosaic virus isolates. Plant Disease, 80, 1239.
Mudde B, Kilalo D C, Olubayo F M M, Asea G, Miano D W. 2019a. Role of prevalent weeds and cultivated crops in the epidemiology of maize lethal necrosis disease in major maize growing agroecological zones of Uganda. Annual Research & Review in Biology, 32, 1–17.
Mudde B, Miano D W, Olubayo F M, Asea G, Kiggundu A. 2019b. Susceptibility of common weeds and cultivated crops in major maize growing agroecological zones of Uganda to viruses causing maize lethal necrosis disease. African Journal of Biological Sciences, 1, 1–14.
Mwando N L, Amanuel T, Nyasani J O, Obonyo M A O, Caulfield J C, Bruce T J A, Sevgan S. 2018. Maize chlorotic mottle virus induces changes in host plant volatiles that attract vector thrips species. Journal of Chemical Ecology, 44, 681–689.
Nault L R. 1978. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology, 68, 1071–1074.
Nelson S, Brewbaker J, Hu J. 2011. Maize chlorotic mottle.PD-79. University of Hawaii, Honolulu, Hawaii.
Niblett C L, Claflin L E. 1978. Corn lethal necrosis - a new virus disease of corn in Kansas. Plant Disease Reporter, 62, 15–19.
Nutter R C, Scheets K, Panganiban L C, Lommel S A. 1989. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Research, 17, 3163–3177.
Olspert A, Chung Y W, Atkins J F, Carr J P, Firth A E. 2015. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. The EMBO Reports, 16, 995–1004.
Pratt C F, Constantine K L, Murphy S T. 2017. Economic impacts of invasive alien species on African smallholder livelihoods. Global Food Security, 14, 31–37.
Quito-Avila D F, Alvarez R A, Mendoza A A. 2016. Occurrence of maize lethal necrosis in Ecuador: A disease without boundaries? European Journal of Plant Pathology, 146, 1–6.
Redinbaugh M G, Stewart L R. 2018. Maize lethal necrosis: An emerging, synergistic viral disease. Annual Review of Virology, 5, 301–322.
Riley D G, Joseph S V, Srinivasan R, Diffie S. 2011. Thrips vectors of tospoviruses. Journal of Integrated Pest Management, 2, I1–I10. 
Ritte I, Egnin M, Kusolwa P, Binagwa P, Kitenge K, Mortley D, Samuels S, Bernard G, Idehen O, Bonsi C. 2017. Evaluation of Tanzanian maize germplasms for identification of resistant genotypes against maize lethal necrosis. African Journal of Plant Science, 11, 415–429.
Scheets K. 1998. Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology, 242, 28–38.
Scheets K. 2000. Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virology, 267, 90–101.
Scheets K. 2008. Machlomovirus. In: Encyclopedia of Virology. 3rd ed. Academic Press, Boston, MA. 
Scheets K. 2016. Analysis of gene functions in maize chlorotic mottle virus. Virus research, 222, 71–79.
Semagn K, Beyene Y, Babu R, Nair S, Gowda M, Das B, Tarekegne A, Mugo S, Mahuku G, Worku M. 2014. Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-Saharan Africa. Crop Science, 55, 1–11.
Shiferaw B, Prasanna B M, Hellin J, Bänziger M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 2011, 307–327.
Shukla D D, Ward C W, Brunt A A. 1994. The Potyviridae. Commonwealth Agricultural Bureaux international, Wallingford, UK.
Slykhuis J T. 1955. Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to the spread of wheat streak mosaic virus. Phytopathology, 45, 116–128.
Stewart L R, Teplier R, Todd J C, Jones M W, Cassone B J, Wijeratne S, Wijeratne A, Redinbaugh M G. 2014. Viruses in maize and johnsongrass in southern Ohio. Phytopathology, 104, 1360–1369.
Stewart L R, Willie K, Wijeratne S, Redinbaugh P, Massawe D P, Niblett C L, Kiggundu A, Asiimwe T. 2017. Johnsongrass mosaic virus contributes to maize lethal necrosis in East Africa. Plant Disease, 101, 1455–1462.
Storey H H. 1924. Diseases of sugarcane of the mosaic type in South Africa. Part I. True mosaic, mottling, or yellow stripe disease. Journal of the Department of Agriculture, 9, 108–117.
Teyssandier E E, Nome S F, Dal Bo E. 1982. Maize virus diseases in Argentina. In: Proceedings of the International Maize Virus Disease Colloquium and Workshop. Ohio Agricultural Research and Development Center, Wooster, OH.
Uyemoto J K. 1980. Severe outbreak of corn lethal necrosis disease in Kansas. Plant Disease, 64, 99–100.
Uyemoto J K. 1983. Biology and control of maize chlorotic mottle virus. Plant Disease, 67, 7–10.
Uyemoto J K, Claflin L E, Wilson D L, Raney R J. 1981. Maize chlorotic mottle and maize dwarf mosaic viruses: effect of single and double inoculations on symptomatology and yield. Plant Disease, 65, 39–41.
Wang Q, Zhou X P, Wu J X. 2014. First report of maize chlorotic mottle virus infecting sugarcane (Saccharum officinarum). Plant Disease, 98, 572.
Wangai A W, Redinbaugh M G, Kinyua Z M, Miano D W, Scheets K, Jeffers D. 2012. First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Disease, 96, 1582.
Webster C G, Wylie S J, Jones M G K. 2004. Diagnosis of plant viral pathogens. Currentence, 86, 1604–1607.
Wu J, Wang Q, Liu H, Qian Y, Xie Y, Zhou X. 2013. Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China. Journal of Zhejiang University (Science B: Biomedicine & Biotechnology), 14, 555–562.
Wu Q, Ding S W, Zhang Y, Zhu S. 2015. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annual Review of Phytopathology, 53, 425–444.
Xia Z, Zhao Z, Chen L, Li M, Zhou T, Deng C, Zhou Q, Fan Z. 2016. Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Scientific Reports, 6, 20520.
Xie L, Zhang J, Wang Q, Meng C, Zhou X. 2011. Characterization of maize chlorotic mottle virus associated with maize lethal necrosis disease in China. Journal of Phytopathology, 159, 191–193.
Yang X, Li Y, Wang A. 2021. Research advances in potyviruses: From the laboratory bench to the field. Annual Review of Phytopathology, 59, 1–29.
Zhang Y, Zhao W, Li M, Chen H, Zhu S, Fan Z. 2011. Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds. Journal of Virological Methods, 171, 292–294.
Zhao M, Ho H, Wu Y, He Y, Li M. 2014. Western flower thrips (Frankliniella occidentalis) transmits maize chlorotic mottle virus. Journal of Phytopathology, 162, 532–536.

[1] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[2] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[3] DONG Suo-meng, ZHOU Shao-qun. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3456-3466.
[4] Andrew GALIMBERTI, Andrei ALYOKHIN, Hongchun QU, Jason ROSE .
Simulation modelling of potato virus Y spread in relation to initial inoculum and vector activity
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 376-388.
[5] Somnath Roy, Soma Das, Gautam Handique, Ananda Mukhopadhyay, Narayanannair Muraleedharan. Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): A review[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2115-2127.
[6] HUANG Jia; WU Shun-fan and YE Gong-yin. Evaluation of Lethal Effects of Chlorantraniliprole on Chilo suppressalis and Its Larval Parasitoid, Cotesia chilonis[J]. >Journal of Integrative Agriculture, 2011, 10(7): 1134-1138.
[7] Stuart R Reitz, GAO Yu-lin and LEI Zhong-ren. Thrips: Pests of Concern to China and the United States[J]. >Journal of Integrative Agriculture, 2011, 10(6): 867-892.
No Suggested Reading articles found!