Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1722-1730    DOI: 10.1016/S2095-3119(21)63727-9
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers
XUAN Jing-li1, 3, XIAO Yue1, 2, YE Fu-yu1, ZHANG Yi-bo1, TAO Shu-xia2, GUO Jian-yang1, LIU Wan-xue1
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Agronomy, Jilin Agricultural University, Changchun 130118, P.R.China
3 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27607, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在寄主-寄生蜂体系中,温度作为一个重要的非生物因子可能影响到寄生蜂生物防治的效力。在本研究中,我们以幼虫内寄生蜂-芙新姬小蜂为研究对象,在室内研究四种温度下(26, 29, 32, 和 35°C)其寄生蜂对蔬菜潜叶蝇-美洲斑潜蝇的控害潜力,且用芸豆室内饲养美洲斑潜蝇种群。研究结果表明:与最佳温度26°C相比,高温(29, 32 和 35°C)虽然降低了雌蜂的寿命,但是由于雌蜂在高温下增加了日均致死数,导致高温没有显著影响该雌蜂的总寄主致死数。此外,该雌蜂的生活史参数(寿命,寄生数,直接致死数及非繁殖型寄主致死数)均与温度和寄主取食数呈线性关系。该研究结果有助于更好的理解寄生蜂芙新姬小蜂在高温季节/环境下对蔬菜潜叶蝇的防控。



Abstract  Temperature, as a critical abiotic factor, might influence the effectiveness of biological control by parasitoids in host-parasitoid systems. In this study, Neochrysocharis formosa (Westwood), a larval endoparasitoid, is used to investigate the efficacy of biological control on a vegetable agriculture pest, Liriomyza sativae Blanchard, reared on kidney bean (Phaseolus vulgaris L.), at four constant temperatures (26, 29, 32, and 35°C) under laboratory conditions. Our results show that high temperatures (29, 32, and 35°C) do not significantly affect lifetime host-killing events of female adults by increased daily host-killing events compared to temperature 26°C, although their lifespans decrease with an increase in temperatures. Each life-history trait of female adults (lifespan, parasitism, stinging, or nonreproductive host-killing events) present a linear relation with temperatures and host-feeding events, respectively. Our findings contribute to a better understanding of biocontrol efficacy of parasitoid N. formosa against agromyzid leafminers at high-temperature seasons or environments.
Keywords:  leaf-mining fly        host-feeding parasitoid        heat stress        biological control
  
Received: 15 January 2021   Accepted: 29 April 2021
Fund: This work was supported by the National Natural Science Foundation of China (31772236), the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (caascx-2017–2022-IAS), and the Program of China Scholarship Council (201807990002).  
About author:  XUAN Jing-li, E-mail: jxuan@ncsu.edu; Correspondence GUO Jian-yang, Tel: +86-10-82105927, E-mail: guojianyang@caas.cn; LIU Wan-xue, Tel: +86-10-82105927, E-mail: liuwanxue@caas.cn

Cite this article: 

XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. 2022. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers. Journal of Integrative Agriculture, 21(6): 1722-1730.

Abram P K, Boivin G, Moiroux J, Brodeur J. 2017. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biological Reviews, 92, 1859–1876.
Abram P K, Cusumano A, Peri E, Brodeur J, Boivin G, Colazza S. 2015. Thermal stress affects patch time allocation by preventing forgetting in a parasitoid wasp. Behavioral Ecology, 26, 1326–1334.
Acar E, Smith B, Hansen L, Booth G. 2001. Use of calorespirometry to determine effects of temperature on metabolic efficiency of an insect. Environmental Entomology, 30, 811–816.
Angilletta Jr M J, Angilletta M J. 2009. Thermal Adaptation: A Heoretical and Empirical Synthesis. Oxford University Press, UK.
Barrett B A, Brunner J F. 1990. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillariidae) as a host. Environmental Entomology, 19, 803–807.
Bernardo U, Pedata P A, Viggiani G. 2006. Life history of Pnigalio soemius (Walker) (Hymenoptera: Eulophidae) and its impact on a leafminer host through parasitization, destructive host-feeding and host-stinging behavior. Biological Control, 37, 98–107.
Briggs C J, Nisbet R M, Murdoch W W, Collier T R, Metz J A J. 1995. Dynamical effects of host-feeding in parasitoids. Journal of Animal Ecology, 64, 403–416.
Calvo F, Soriano J, Bolckmans K, Belda J. 2013. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Science and Technology, 23, 803–815.
Chan M S, Godfray H C J. 1993. Host-feeding strategies of parasitoid wasps. Evolutionary Ecology, 7, 593–604.
Desouhant E, Driessen G, Amat I, Bernstein C. 2005. Host and food searching in a parasitic wasp Venturia canescens: a trade-off between current and future reproduction? Animal Behaviour, 70, 145–152.
Duncan R, Pena J E. 2000. Fecundity, host stage preferences and the effects of temperature on Pnigalio minio (Hymenoptera: Eulophidae), a parasitoid of Phyllocnistis citrella (Lepidoptera: Gracillariidae). Proceedings of the Florida State Horticultural Society, 113, 20–24.
Furlong M J, Zalucki M P. 2017. Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current Opinion in Insect Science, 20, 39–44.
Giron D, Rivero A, Mandon N, Darrouzet E, Casas J. 2002. The physiology of host feeding in parasitic wasps: Implications for survival. Functional Ecology, 16, 750–757.
Grabenweger G, Hopp H, Schmolling S, Koch T, Balder H, Jäckel B. 2009. Laboratory rearing and biological parameters of the Eulophid Pnigalio agraules, a parasitoid of Cameraria ohridella. Journal of Applied Entomology, 133, 1–9.
Hance T, van Baaren J, Vernon P, Boivin G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107–126. 
Hansen L S, Jensen K M. 2002. Effect of temperature on parasitism and host-feeding of Trichogramma turkestanica (Hymenoptera: Trichogrammatidae) on Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Economic Entomology, 95, 50–56.
Hegland S J, Nielsen A, Lázaro A, Bjerknes A L, Totland Ø. 2009. How does climate warming affect plant–pollinator interactions? Ecology Letters, 12, 184–195.
Heimpel G E, Collier T R. 1996. The evolution of host-feeding behaviour in insect parasitoids. Biological Reviews, 71, 373–400.
Hentz M G, Ellsworth P C, Naranjo S E, Watson T F. 1998. Development, longevity, and fecundity of Chelonus sp. nr. curvimaculatus (Hymenoptera: Braconidae), an egg-larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). Environmental Entomology, 27, 443–449.
Iltis C, Martel G, Thiéry D, Moreau J, Louâpre P. 2018. When warmer means weaker: high temperatures reduce behavioural and immune defences of the larvae of a major grapevine pest. Journal of Pest Science, 91, 1315–1326.
Jeffs C T, Lewis O T. 2013. Effects of climate warming on host–parasitoid interactions. Ecological Entomology, 38, 209–218.
Jerbi-Elayed M, Lebdi-Grissa K, Le Goff G, Hance T. 2015. Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae). Journal of Insect Behavior, 28, 157–166.
Jervis M A, Kidd N A C. 1986. Host-feeding strategies in hymenopteran parasitoids. Biological Reviews, 61, 395–434.
Kapranas A, Luck R F. 2008. Egg maturation, host feeding, and longevity in two Metaphycus parasitoids of soft scale insects. Biological Control, 47, 147–153.
Kidd N A C, Jervis M A. 1989. The effects of host-feeding behaviour on the dynamics of parasitoid-host interactions, and the implications for biological control. Researches on Population Ecology, 31, 235–274.
Lewis W J, Stapel J O, Cortesero A M, Takasu K. 1998. Understanding how parasitoids balance food and host needs: Importance to biological control. Biological Control, 11, 175–183.
Liu W X, Wang W X, Zhang Y B, Wang W, Lu S L, Wan F H. 2015. Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biological Control, 81, 58–64.
Marshall K E, Sinclair B J. 2010. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society (B: Biological Sciences), 277, 963–969.
Miksanek J R, Heimpel G E. 2020. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia, 194, 311–320.
Mironidis G K, Savopoulou-Soultani M. 2010. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology, 35, 59–69.
Moiroux J, Abram P K, Louâpre P, Barrette M, Brodeur J, Boivin G. 2016. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms. The Science of Nature, 103, 32–42.
Moiroux J, Boivin G, Brodeur J. 2015. Temperature influences host instar selection in an aphid parasitoid: support for the relative fitness rule. Biological Journal of the Linnean Society, 115, 792–801.
Moon H C, Jeon Y K, Choi S W, Jung S S, Ryu J, Choi J S, Choi Y G, Hwang C Y. 2004. Oviposition and host feeding characteristics of Neochrysocharis formosa (Hymenoptera: Eulophidae), an endoparasitoid of Liriomyza trifolii (Diptera: Agromyzidae). Korean Journal of Applied Entomology, 43, 21–26. (in Korean)
Morales-Ramos J A, Cate J R. 1992. Rate of increase and adult longevity of Catolaccus grandis (Burks) (Hymenoptera: Pteromalidae) in the laboratory at four temperatures. Environmental Entomology, 21, 620–627.
Nguyen T M, Bressac C, Chevrier C. 2013. Heat stress affects male reproduction in a parasitoid wasp. Journal of Insect Physiology, 59, 248–254.
Olson D, Fadamiro H, Lundgren J N G, Heimpel G E. 2000. Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiological Entomology, 25, 17–26.
Osmankhil M H, Mochizuki A, Hamasaki K, Iwabuchi K. 2010. Oviposition and larval development of Neochrysocharis formosa (Hymenoptera: Eulophidae) inside the host larvae, Liriomyza trifolii. Japan Agricultural Research Quarterly, 44, 33–36. (in Japanese)
Oswald S A, Arnold J M. 2012. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints. Integrative Zoology, 7, 121–136.
Pecl G T, Araújo M B, Bell J D, Blanchard J, Bonebrake T C, Chen I C, Clark T D, Colwell R K, Danielsen F, Evengård B. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355, 9214–9223.
Régnière J, Powell J, Bentz B, Nealis V. 2012. Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology, 58, 634–647.
Rivero A, West S. 2005. The costs and benefits of host feeding in parasitoids. Animal Behaviour, 69, 1293–1301.
Saleh A, Allawi T, Ghabeish I. 2010. Mass rearing of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a parasitoid of leafminers (Diptera: Agromyzidae). Journal of Pest Science, 83, 59–67.
Sánchez-Guillén R A, Córdoba-Aguilar A, Hansson B, Ott J, Wellenreuther M. 2016. Evolutionary consequences of climate-induced range shifts in insects. Biological Reviews, 91, 1050–1064.
Schmitz O J, Barton B T. 2014. Climate change effects on behavioral and physiological ecology of predator-prey interactions: implications for conservation biological control. Biological Control, 75, 87–96.
Seebacher F, White C R, Franklin C E. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5, 61–66.
Sevenster J G, Driessen G, Ellers J. 2000. The shape of the trade-off function between egg production and life span in the parasitoid Asobara tabida. Netherlands Journal of Zoology, 50, 29–36.
Stoks R, Verheyen J, Van Dievel M, Tüzün N. 2017. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Current Opinion in Insect Science, 23, 35–42.
Tylianakis J M, Binzer A. 2014. Effects of global environmental changes on parasitoid–host food webs and biological control. Biological Control, 75, 77–86.
Uçkan F, Ergin E. 2002. Effect of host diet on the immature developmental time, fecundity, sex ratio, adult longevity, and size of Apanteles galleriae (Hymenoptera: Braconidae). Environmental Entomology, 31, 168–171.
Walther G R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society (B: Biological Sciences), 365, 2019–2024.
Wang S X, Li X J, Zheng G, Zhang G X. 2007. Bionomics of Neochrysocharis formosa (Westwood). Chinese Journal of Biological Control, 23, 205–208. (in Chinese)
Wang W, Wang W X, Liu W X, Cheng L S, Wan F H. 2012. Research advances on biological characteristics and application of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae). Chinese Journal of Biological Control, 28, 575–582. (in Chinese)
Wilkes A. 1963. Environmental causes of variation in the sex ratio of an arrhenotokous insect, Dahlbominus fuliginosus (Nees) (Hymenoptera: Eulophidae). The Canadian Entomologist, 95, 183–202.
Xuan J L, Liu W X, Zhang Y B, Cheng X Q, Guo J Y, Wan F H. 2018. Interactions between Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae), two parasitoids of agromyzid leafminers. Biological Control, 126, 45–52.
Zhang Y B, Liu W X, Wang W, Wan F H, Li Q. 2011. Lifetime gains and patterns of accumulation and mobilization of nutrients in females of the synovigenic parasitoid, Diglyphus isaea Walker (Hymenoptera: Eulophidae), as a function of diet. Journal of Insect Physiology, 57, 1045–1052.
Zhang Y B, Lu S L, Liu W X, Wang W X, Wang W, Wan F H. 2014. Comparing immature development and life history traits in two coexisting host-feeding parasitoids, Diglyphus isaea and Neochrysocharis formosa (Hymenoptera: Eulophidae). Journal of Integrative Agriculture, 13, 2690–2700.
Zhang Y B, Zhang G F, Liu W X, Wan F H. 2019. Variable temperatures across different stages have novel effects on behavioral response and population viability in a host-feeding parasitoid. Scientific Reports, 9, 1–10.

[1] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[2] NI sheng-jing, ZHAO Hui-fang, ZHANG Guo-ping. Effects of post-heading high temperature on some quality traits of malt barley[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2674-2679.
[3] YANG Huan, GU Xiao-tian, DING Meng-qiu, LU Wei-ping, LU Da-lei. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize[J]. >Journal of Integrative Agriculture, 2020, 19(1): 78-88.
[4] LIU Xiu-ming, WU Xiang-li, GAO Wei, QU Ji-bin, CHEN Qiang, HUANG Chen-yang, ZHANG Jin-xia. Protective roles of trehalose in Pleurotus pulmonarius during heat stress response[J]. >Journal of Integrative Agriculture, 2019, 18(2): 428-437.
[5] FAN Cai-yun, SU Di, TIAN He, HU Rui-ting, RAN Lei, YANG Ying, SU Yan-jing, CHENG Jian-bo. Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2844-2854.
[6] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[7] CHENG Jian-bo, FAN Cai-yun, SUN Xian-zhi, WANG Jia-qi, ZHENG Nan, ZHANG Xing-kai, QIN Junjie, WANG Xiu-min. Effects of Bupleurum extract on blood metabolism, antioxidant status and immune function in heat-stressed dairy cows[J]. >Journal of Integrative Agriculture, 2018, 17(03): 657-663.
[8] YANG Min, QIN Bao-ping, MA Xue-li, WANG Ping, LI Mei-ling, CHEN Lu-lu, CHEN Lei-tai, SUN Aiqing, WANG Zhen-lin, YIN Yan-ping. Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2745-2758.
[9] ZHOU Bei-bei, SUN Jian, LIU Song-zhong, JIN Wan-mei, ZHANG Qiang, WEI Qin-ping. Dwarfing apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1025-1033.
No Suggested Reading articles found!