Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (12): 3434-3444    DOI: 10.1016/j.jia.2022.08.053
Special Focus: Integrated Pest Management and Plant Health Advanced Online Publication | Current Issue | Archive | Adv Search |
An integrated pest management program for managing fusarium head blight disease in cereals

CHEN A-hai1, Tofazzal ISLAM2, MA Zhong-hua1

1 State Key Laboratory of Rice Biology/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P.R.China
2 Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

近年来,由于气候变化和粗放秸秆还田等因素的影响,由禾谷镰孢菌复合种(Fusarium graminearum species complex, FGSC)引起的小麦赤霉病(Fusarium head blight, FHB)我国呈加重发生趋势,流行频率明显增加,造成严重经济损失。此外FGSC在侵染小麦作物过程中会产生脱氧雪腐镰刀菌烯醇(DeoxynivalenolDON)和玉米赤霉烯(ZearalenoneZEA)等多种真菌毒素,人畜误食这些真菌毒素污染的农产品及其产品,会引起呕吐、流产、免疫力下降甚至死亡等问题。因此,加强赤霉病防控对保障我国小麦丰收和农产品质量安全有重要意义。本文综述了赤霉病在全世界的分布病原菌种类、寄主范围、病害循环、病害流行因素阐述病害对经济、环境和食品安全的影响。在此基础上,重点梳理和探讨小麦赤霉持续防控策略由于高抗赤霉病的小麦种质资源的缺乏,加强抗病基因筛选鉴定、精细定位及实际效应评价,将成为抗赤霉病小麦品种培育的重要工作。当前,科学使用化学药剂仍然是赤霉病防控的重要措施,氰烯菌酯•戊唑醇、戊唑醇•丙硫菌唑、氟唑菌酰羟胺•丙环唑等药剂对赤霉病及其毒素有优良的防治效果然而,药剂长期使用,导致病菌产生抗药性问题因此,加强病菌抗药性监测以及治理是病害化学防治重要内容。由于我国普遍推广秸秆还田,但很多地区秸秆粗放还田导致许多作物秸秆残留在土壤表面,非常有利FGSC秸秆上大量生长繁殖;利用生物防治抑制作物秸秆上病菌生长繁殖,能显著降低病菌初侵染源。因此今后一段时间,生物防治有望成为抑制病菌初侵染源的重要措施。此外,合理的作物轮作、科学肥水管理等农艺措施,能提高作物的抗病性,在一定程度上降低病害流行风险。总体来说,今后较长的一段时间,小麦赤霉病在我国仍将维持高频率流行态势。因此,需要通过抗病品种、药剂高效防控和生物防治等技术集成创新,构建小麦赤霉持续绿色防控技术体系,保障小麦丰收和农产品质量安全。



Abstract  

Fusarium head blight (FHB) is a worldwide devastating disease of small grain cereals and Fusarium graminearum species complex (FGSC) is the major pathogen causing the disease.  The epidemics of FHB lead to the reduction of grain yield and economic losses.  Additionally, mycotoxins produced by the FHB pathogens are hazardous to the health of human and livestock.  In this review, we summarize the epidemiology of FHB, and introduce effects of this disease on economy, environment and food safety.  We focus on the integrated management approaches for controlling FHB including agronomic practices, resistant cultivars, chemical control, and biocontrol.  In addition, we also discuss the potential novel management strategies against FHB and mycotoxin.


Keywords:  fusarium head blight       Fusarium graminearum       integrated pest management program       mycotoxins  
Received: 27 August 2020   Accepted: 23 January 2022
Fund: This work was supported by the Science and Technology Project of Zhejiang Province, China (2018C02G2011110), the National Natural Science Foundation of China (31930088 and 32001855), and the earmarked fund for China Agriculture Research System (CARS-3-1-29).

About author:  CHEN A-hai, Tel: +86-571-88982268, E-mail: chenahai0717@126.com; Tofazzal ISLAM, E-mail: tofazzalislam@yahoo.com; Correspondence MA Zhong-hua, Tel: +86-571-88982268, E-mail: zhma@zju.edu.cn

Cite this article: 

CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. 2022. An integrated pest management program for managing fusarium head blight disease in cereals. Journal of Integrative Agriculture, 21(12): 3434-3444.

Abid M, Fayolle L, Edel-Hermann V, Gautheron N, Steinberg C. 2021. Fate of deoxynivalenol (DON) and impact on the soil microflora and soil fauna. Applied Soil Ecology, 162, 103898.
Adam K, Anna K, Hubert S, Michal N, Marta M. 2017. A review of conventional PCR assays for the detection of selected phytopathogens of wheat. Journal of Molecular Microbiology and Biotechnology, 27, 175–189.
Alconada T M, Moure M C, Ortega L M. 2019. Fusarium infection in wheat, aggressiveness and changes in grain quality: A review. Vegetos, 32, 441–449.
Aoki T, Vaughan M M, McCormick S P, Busman M, Ward T J, Kelly A, O’Donnell K, Johnston P R, Geiser D M. 2015. Fusarium dactylidis, sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia, 107, 409–418.
Aoki T, Ward T J, Kistler H C, O’Donnell K. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins, 62, 91–102.
Bai G, Su Z, Cai J. 2018. Wheat resistance to Fusarium head blight. Canadian Journal of Plant Pathology, 40, 336–346.
Bekele B, Dawit W. 2018. Review on the status and management strategies of Fusarium head blight (Fusarium graminearum) of wheat. International Journal of Research in Agricultural Sciences, 4, 2348–3997.
Bian C, Duan Y, Xiu Q, Wang J, Zhou M. 2021. Mechanism of validamycin a inhibiting don biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. Molecular Plant Pathology, 22, 769–785.
Bormann J, Heinze C, Blum C, Mentges M, Brockmann A, Landt S K, Josephson B, Indenbirken D, Spohn M, Plitzko B, Loesgen S, Freitag M, Schaefer W. 2018. Expression of a structural protein of the mycovirus FgV-ch9 negatively affects the transcript level of a novel symptom alleviation factor and causes virus-infection-like symptoms in Fusarium graminearum. Journal of Virology, 92, e00326–e00344.
Brauer E K, Subramaniam R, Harris L J. 2020. Regulation and dynamics of gene expression during the life cycle of Fusarium graminearum. Phytopathology, 110, 1368–1374.
Brown-Guedira G, Griffey C, Kolb F, McKendry A, Murphy J, Sanford D. 2008. Breeding FHB-resistant soft winter wheat: Progress and prospects. Cereal Research Communications, 36, 31–35.
Buerstmayr H, Ban T, Anderson J A. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 128, 1–26.
Buerstmayr M, Buerstmayr H. 2016. The semidwarfing alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology, 106, 1544–1552.
Buerstmayr M, Steiner B, Buerstmayr H. 2020. Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breeding, 139, 429–454.
Bushnell W R, Hazen B E, Pritsch C. 2003. Histology and physiology of Fusarium head blight. In: Leonard, K J, Bushnell W R, eds., Fusarium Head Blight of Wheat and Barley. APS Press, St. Paul, MN. pp. 44–83.
Chen Y, Kistler H C, Ma Z. 2019. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology, 57, 15–39.
Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 9, 3429.
Chen Y, Wang W X, Zhang A F, Chun-Yan G U, Zhou M G, Gao T C. 2011. Activity of the fungicide JS399-19 against Fusarium head blight of wheat and the risk of resistance. Agricultural Sciences in China, 10, 1906–1913.
Cho W K, Yu J, Lee M, Son M, Min K, Lee Y W, Kim K H. 2012. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics, 13, 173.
Clear R M, Patrick S K. 2010. Fusarium Head Blight in Western Canada. Grain Research Laboratory, Canadian Grain Commission, Canada.
Cowger C, Patton-Ozkurt J, Brown-Guedira G, Perugini L. 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology, 99, 320–327.
Cuthbert P A, Somers D J, BruleBabel A. 2007. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.), Theoretical and Applied Genetics. 114, 429–437.
Cuthbert P A, Somers D J, Thomas J, Cloutier S, BruleBabel A. 2006. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 112, 1465–1472.
Darissa O, Adam G, Schaefer W. 2012. A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. European Journal of Plant Pathology, 134, 181–189.
Dean R, VanKan J A L, Pretorius Z A, Hammond-Kosack K E, Pietro A D, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.
Dill-Macky R, Jones R K. 2000. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Disease, 84, 71–76.
Dong F, Qiu J B, Xu J H, Yu M Z, Wang S F, Sun Y, Zhang G, Shi J. 2016. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. International Journal of Food Microbiology, 230, 58–63.
Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P. 2007. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theoretical and Applied Genetics, 115, 617–625.
Dweba C C, Figlan S, Shimelis H A, Motaung T E, Sydenham S, Mwadzingeni L, Tsilo T J. 2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114–122.
Eagles E J, Benstead R, Macdonald S, Handy R D, Hutchinson T H. 2021. Environmental risks to freshwater organisms from the mycotoxins deoxynivalenol and zearalenone using species sensitivity distributions. Chemosphere, 267, 129279.
Figueroa M, Hammond-Kosack K E, Solomon P S. 2018. A review of wheat diseases: A field perspective. Molecular Plant Pathology, 19, 1523–1536.
Goswami R S, Kistler H C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.
Grafenhan T, Johnston P R, Vaughan M M, McCormick S P, Proctor R H, Busman M, Ward T J, O’Donnell K. 2016. Fusarium praegraminearum sp. nov., a novel nivalenol mycotoxin-producing pathogen from New Zealand can induce head blight on wheat. Mycologia, 108, 1229–1239.
Guenther J, Trail F. 2005. The development and differentiation of Gibberella zeae (Anamorph: Fusarium graminearum) during colonization of wheat. Mycologia, 97, 232–240.
Gunupuru L R, Arunachalam C, Malla K B, Kahla A, Perochon A, Jia J, Thapa G, Doohan F M, Sarrocco S. 2019. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield. PLoS ONE, 13, e0204992.
Hao J J, Xie S, Sun J, Yang G Q, Song Y. 2017. Analysis of Fusarium graminearum species complex from wheat–maize rotation regions in Henan (China). Plant Disease, 101, 720–725.
He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. 2020. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat. Frontiers in Plant Science, 11, 574775.
Hilton A J, Jenkinson P, Hollins T W, Parry D W. 1999. Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathology, 48, 202–208.
Hofgaard I S, Aamot H U, Torp T, Jestoi M, Lattanzio V M T, Klemsdal S S, Waalwijk C, Van der Lee T, Brodal G. 2016. Associations between Fusarium species and mycotoxins in oats and spring wheat from farmers’ fields in Norway over a six-year period. World Mycotoxin Journal, 9, 365–378.
Hope R, Aldred D, Magan N. 2005. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Letters in Applied Microbiology, 40, 295–300.
IWGSC (The International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu J R. 2016. Tri6 and tri10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology, 18, 3689–3701.
Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. 2020. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathology, 69, 249–258.
Jochum C C, Osborne L E, Yuen G Y. 2006. Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biological Control, 39, 336e344.
Kangethe E K, Korhonen H, Marimba K A, Nduhiu G, Mungatu J K, Okoth S A, Joutsjoki V, Wamae L W, Shalo P. 2017. Management and mitigation of health risks associated with the occurrence of mycotoxins along the maize value chain in two counties of Kenya. Food Quality and Safety, 1, 268–274.
Khan M K, Pandey A, Athar T, Choudhary S, Deval R, Gezgin S, Hamurcu M, Topal A, Atmaca E, Santos P A, Omay M R, Suslu H, Gulcan K, Inanc M, Akkaya M S, Kahraman A, Thomas G. 2020. Fusarium head blight in wheat: contemporary status and molecular approaches. 3 Biotech, 10, 1–17.
Kheiri A, Jorf S, Malihipour A. 2019. Infection process and wheat response to Fusarium head blight caused by Fusarium graminearum. European Journal of Plant Pathology, 153, 489–502.
Klix M B. 2007. Major mycotoxin producin Fusarium species in wheat-factors affecting the species complex composition and disease management. Cuvillier Verlag, Göttingen, Germany. pp. 17–32.
Kubo K, Fujita M, Kawada N, Nakajima T, Nakamura K, Maejima H, Ushiyama T, Hatta K, Matsunaka H. 2013. Minor difference in anther extrusion affect resistance to Fusarium head blight in wheat. Journal of Phytopathology, 161, 308–314.
Lee H J, Ryu D. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 65, 7034–7051.
Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, et al. 2019. Mutation of a histidine-rich calcium-binding protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 51, 1106–1112.
Li H, Diao Y, Wang J, Chen C, Ni J, Zhou M. 2008. Js399-19, a new fungicide against wheat scab. Crop Protection, 27, 90–95.
Liu Q, Yang P, Du W, Dong D, Yang G, Tang S. 2021. Enrichment of deoxynivalenol and establishment of online early warning treatment system for drinking water. International Journal of Food Science and Technology, 56, 2612–2620.
Liu S, Hall M D, Griffey C A, McKendry A L. 2009. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Science, 49, 1955–1968.
Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjornstad A. 2013. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theoretical and Applied Genetics, 126, 317–334.
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 133, 1541–1568.
Martinez M, Albuquerque D R, Dinolfo M I, Biganzoli F, Stenglein S. 2020. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxin contamination in barley (part ii). Journal of the Science of Food and Agriculture, 100, 3182–3191.
Matarese F, Sarrocco S, Gruber S. 2012. Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology, 158, 98e106.
McMullen M, Bergstrom G, DeWolf E, Dill-Macky R, Hershman D, Shaner G, Sanford D V. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.
Mesterhazy A. 1995. Types and components of resistance to Fusarium head blight. Plant Breed, 114, 377e386.
Miedaner T, Voss H H. 2008. Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Science, 48, 2115–2122.
Mielniczuk E, Skwarylo-Bednarz B. 2020. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy, 10, 509.
Palazzini J M, Ramireza M L, Torresa A M, Chulze S N. 2007. Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Protection, 26, 1702–1710.
Parry D W, Jenkinson P, McLeod L. 1995. Fusarium ear blight (scab) in small grain cereals - A review. Plant Pathology, 44, 207–238.
Pearce R B, Strange R N, Smith H. 1976. Glycinebetaine and choline in wheat: Distribution and relation to infection by Fusarium graminearum. Phytochemistry, 15, 953–954.
Pereira C B, Ward T J, Tessmann D J, Ponte E M D, Laraba I, Vaughan M M, McCormick S P, Busman M, Kelly A, Proctor R H, O’Donnell K. 2018. Fusarium subtropicale, sp. nov., a novel nivalenol mycotoxin-producing species isolated from barley (Hordeum vulgare) in Brazil and sister to F. praegraminearum. Mycologia, 110, 860–871.
Pestka J J, Smolinski A T. 2005. Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology and Environmental Health (Part B: Critical Reviews), 8, 39–69.
Podolska G, Bryla M, Sułek A, Wa’skiewicz A, Szymczyk K, Jedrzejczak R. 2017. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. Quality Assurance and Safety of Crops and Foods, 9, 451–461.
Prat N, Buerstmayr M, Steiner B, Robert O, Buerstmayr H. 2014. Current knowledge on resistance to Fusarium head blight in tetraploid wheat. Molecular Breeding, 34, 1689–1699.
Qin P, Xu J, Jiang Y, Hu L, Lee T V, Waalwijk C, Zhang W M, Xu X. 2020. Survey for toxigenic Fusarium species on maize kernels in China. World Mycotoxin Journal, 13, 1–12.
Qu B, Li H P, Zhang J B, Xu Y B, Huang T, Wu A B, Zhao C S, Carter J, Nicholson P, Liao Y C. 2008. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology, 57, 15–24.
Reis E M, Carmona M A. 2013. Integrated disease management of Fusarium head blight. In: Alconada Magliano T, Chulze S, eds., Fusarium Head Blight in Latin America. Springer, Dordrecht, The Netherlands. pp. 159–173.
Ruckenbauer P, Buerstmayr H, Lemmens M. 2001. Present strategies in resistance breeding against scab (Fusarium spp.). Euphytica, 119, 121–127.
Salem I B, Boussabbeh M, Silva J, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C. 2017. Sirt1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway. Toxicology and Applied Pharmacology, 314, 82–90.
Schisler D A, Khan N I, Boehm M J, Lipps P E, Slininger P J, Zhang S. 2006. Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biological Control, 39, 497e506.
Schisler D A, Khan N I, Boehm M J, Slininger P J. 2002. Greenhouse and field evaluation of biological control of Fusarium head blight on durum wheat. Plant Disease, 86, 1350e1356.
Schisler D A, Slininger P J, Boehm M J, Paul P A. 2011. Co-culture of yeast antagonists of Fusarium head blight and their effect on disease development in wheat. Plant Pathology, 10, 128e137.
Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L. 2005. Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theoretical and Applied Genetics, 111, 747–756.
Schumann G L, D’ Arcy C J. 2006. Essential Plant Pathology. APS Press, St. Paul, MN.
Shroeder H W, Christensen J J. 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831e838.
Skinnes H, Semagn K, Tarkegne Y, Maroy A G, Bjornstad A. 2010. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breeding, 129, 149–155.
Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.
Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P. 2008. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theoretical and Applied Genetics, 116, 1145–1153.
Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H. 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Tropical Plant Pathology, 42, 165–174.
Stępień Ł, Chełkowski J. 2010. Fusarium head blight of wheat: Pathogenic species and their mycotoxins. World Mycotoxin Journal, 3, 107–119.
Strange R N, Smith H, Majer J R. 1972. Choline, one of two fungal growth stimulants in anthers responsible for the susceptibility of wheat to Fusarium graminearum. Nature, 238, 103–104.
Streit E, Naehrer K, Rodrigues I, Schatzmayra G. 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93, 2892–2899.
Su Z, Bernardo A, Tian  B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick  H, Amand P S, Yu J, Zhang Z, Bai G. 2019. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 51, 1099–1105.
Summerell B A. 2019. Resolving Fusarium: Current status of the genus. Annual Review of Phytopathology, 57, 323–339.
Tang G, Chen Y, Xu J R, Kistler H C, Ma Z. 2018. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathogens, 14, e1006827.
Trail F. 2009. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 149, 103–110.
Turkington T K, Clear R M, Patrick S K. 2005. Characteristics of wheat fields positive for Fusarium graminearum in Alberta, in 2002 and 2003. Canadian Journal of Plant Pathology, 27, 479.
Valverde-Bogantes E, Bianchini A, Herr J R, Rose D J, Wegulo S N, Hallen-Adams H E. 2020. Recent population changes of Fusarium head blight pathogens: Drivers and implications. Canadian Journal of Plant Pathology, 42, 315–329.
Vaughan M, Backhouse D, Ponte E M D. 2016. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin Journal, 9, 685–700.
Venske E, Dos Santos R S, Farias D D R, Rother V, Maia L C D, Pegoraro C, de Oliveira A C. 2019. Meta-analysis of the QTLome of Fusarium Head Blight resistance in bread wheat: Refining the current puzzle. Frontiers in Plant Science, 10, 727.
Wachowska U, Glowacka K. 2014. Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of wheat. Biological Control, 59, 635e645.
Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368, eaba5435. 
Wang J H, Wang J, Ndoye M, Zhang J, Li H, Liao Y. 2011. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins, 3, 1020–1037.
Wang Q, Chen D, Wu M, Zhu J, Jiang C, Xu J R, Liu H. 2018. MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum. Frontiers in Plant Science, 9, 438.
Wegulo S N, Baenziger P S, Nopsa J H, Bockus W W, Hallen-Adams H. 2015. Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100–107.
Xu F, Liu W, Song Y, Zhou Y, Liu L. 2021. The distribution of Fusarium graminearum and F. asiaticum causing Fusarium head blight of wheat in relation to climate and cropping system. Plant Disease, 105, 2830–2835.
Xu X M, Parry D W, Nicholson P, Thomsett M A, Simpson D, Edwards S G, Cooke B M, Doohan F M, Brennan J M, Moretti A, Tocco G, Mule G, Hornok L, Giczey G, Tatnell J. 2005. Predominance and association of pathogenic species causing Fusarium ear blight in wheat. European Journal of Plant Pathology, 112, 143–154.
Xue A G, Chen Y, Voldeng H D, Fedak G, Savard M E, Langle T, Zhang J, Harman G E. 2014b. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biological Control, 73, 2e7.
Xue A G, Chen Y H, Santanna S M R, Voldeng H D, Fedak G, Savard M E, Langle T, Zhang J X, Harman G E. 2014a. Efficacy of CLO-1 biofungicide in suppressing perithecial production by Gibberella zeae on crop residues. Canadian Journal of Plant Pathology, 36, 161e169.
Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L. 2010. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 147–156.
Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z. 2011. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 123, 1055–1063.
Yang M X, Zhang H, Kong X J, van der Lee T, Waalwijk C, van Diepeningen A, Xu J, Xu J S, Chen W Q, Feng J. 2018. Host and cropping system shape the Fusarium population: 3ADON-producers are ubiquitous in wheat whereas NIV-producers are more prevalent in rice. Toxins, 10, 115.
Yerkovich N, Cantoro R, Palazzini J M, Torres A, Chulze S N. 2020. Fusarium head blight in Argentina: pathogen aggressiveness, triazole tolerance and biocontrol-cultivar combined strategy to reduce disease and deoxynivalenol in wheat. Crop Protection, 137, 105300.
Yi C, Kaul H P, Kübler E, Schwadorf K, Aufhammer I. 2001. Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop soil tillage and nitrogen fertilisation. Pflanzen, 108, 217–230.
Zain M E. 2011. Impact of mycotoxins on human and animals. Journal of Saudi Chemical Society, 15, 129–144.
Zhang C, Chen Y, Yin Y, Ji H H, Shim W B, Hou Y, Zhou M, Li X D, Ma Z. 2015. A small molecule species specifically inhibits Fusarium myosin I. Environmental Microbiology, 17, 2735–2746.
Zhang H, Lee T V, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J. 2012. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE, 7, e31722.
Zhang J B, Li H P, Dang F J, Qu B, Xu Y B, Zhao C S, Liao Y C. 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research, 111, 967–975.
Zhao M, Leng Y, Chao S, Xu S S, Zhong S. 2018. Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Theoretical and Applied Genetics, 131, 1939–1951.
Zhao Y, Selvaraj N, Xing F, Zhou L, Wang Y, Song H, Tan X, Sun L, Sangare L, Folly Y M E, Liu Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE, 9, e92486.

[1] FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei. Application of virus-induced gene silencing for identification of FHB resistant genes[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2183-2192.
[2] HU Li-qin, MU Jing-jing, SU Pei-sen, WU Hong-yan, YU Guang-hui, WANG Gui-ping, WANG Liang, MA Xin, LI An-fei, WANG Hong-wei, ZHAO Lan-fei, KONG Ling-rang . Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance
 
[J]. >Journal of Integrative Agriculture, 2018, 17(2): 368-380.
[3] WANG Yu-jiao, NIE Ji-yun, YAN Zhen, LI Zhi-xia, CHENG Yang, Saqib Farooq. Multi-mycotoxin exposure and risk assessments for Chinese consumption of nuts and dried fruits[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1676-1690.
[4] WANG Yan, DONG Yan-jie, LI Zeng-mei, DENG Li-gang, GUO Chang-ying, ZHANG Shu-qiu, LI Dapeng, ZHAO Shan-cang. Fast determination of multi-mycotoxins in corn by dispersive solid-phase extraction coupled with ultra-performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1656-1666.
[5] Jonathan Nimal Selvaraj, ZHOU Lu, WANG Yan, ZHAO Yue-ju, XING Fu-guo, DAI Xiao-feng, LIU Yang. Mycotoxin detection- Recent trends at global level[J]. >Journal of Integrative Agriculture, 2015, 14(11): 2265-2281.
[6] QI Jun-xian, LIU Tai-guo, XU Ying, CHEN Huai-gu, GAO Li, LIU Bo , CHEN Wan-quan. Jellyfish Green Fluorescent Protein (GFP) as a Reporter for Fusarium gramminearum Development on Wheat[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2177-2183.
[7] CHEN Yu, WANG Wen-xiang, ZHANG Ai-fang, GU Chun-yan, ZHOU Ming-guo , GAO Tong-chun. Activity of the Fungicide JS399-19 Against Fusarium Head Blight of Wheat and the Risk of Resistance[J]. >Journal of Integrative Agriculture, 2011, 10(12): 1906-1913.
No Suggested Reading articles found!