Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (2): 338-349    DOI: 10.1016/S2095-3119(19)62754-1
Section 2 Invasive insect pests of potato: global perspectives Advanced Online Publication | Current Issue | Archive | Adv Search |
Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
Oluwashola OLANIYAN1, Neus RODRÍGUEZ-GASOL1, 2, Nathalie CAYLA1, 3, Eleonor MICHAUD1, 3, Steve D. WRATTEN1  
1 Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
2 Institute for Research and Technology in Food and Agriculture (IRTA), Lleida 25003, Spain
3 Agrocampus Ouest, Institut National Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes Cedex 35000, France
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
The potato psyllid Bactericera cockerelli (Hemiptera: Triozidae) has recently emerged as a serious pest of potatoes and other solanaceous crops.  It causes direct feeding damage and also vectors Candidatus Liberibacter solanaceaerum (Lso), a pathogen that causes zebra chip disease in potatoes and which potentially costs growers millions of dollars each year.  Such producers rely on frequent sprays of pesticides for psyllid control but the results are unsatisfactory and there are negative side effects.  The psyllid has spread beyond its native range in southwest US and northern Mexico to Canada, El Salvador, Honduras, Guatemala and Nicaragua via medium to long range dispersal flights perhaps aided by wind currents, and through anthropogenic means.  It was accidentally introduced into New Zealand in 2006 and most recently Australia, most likely through the importation of infested plant material.  This review summarizes information from studies on the biology, impact and management of B. cockerelli, and highlights the imminent risk of this insect and its associated pathogen invading China, the world’s largest producer of fresh potatoes.  Development of risk maps leading to increased surveillance, could prevent or delay an incursion and facilitate early detection or eradication should this occur.  Long-term management with Lso-tolerant potato cultivars and psyllid control using the parasitic wasp Tamarixia triozae and other natural enemies should be pursued, rather than depending on synthetic pesticides.
Keywords:  Bactericera cockerelli        tomato-potato psyllid        invasive pest        Candidatus Liberibacter solanaceaerum        biological control        Tamarixia triozae  
Received: 25 February 2019   Accepted:
Fund: The study was funded by the New Zealand Agricultural and Marketing Research and Development Trust (AGMARDT) Grant A17022.
Corresponding Authors:  Correspondence Steve D. WRATTEN, E-mail:   
About author:  Oluwashola Olaniyan, E-mail:;

Cite this article: 

Oluwashola OLANIYAN, Neus RODRíGUEZ-GASOL, Nathalie CAYLA, Eleonor MICHAUD, Steve D. WRATTEN. 2020.

Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
. Journal of Integrative Agriculture, 19(2): 338-349.

Abdullah N. 2008. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. African Journal of Agricultural Research, 3, 60–67.
Alfaro-Fernández A, Cebrián M C, Villaescusa F J, de Mendoza A H, Ferrándiz J C, Sanjuán S, Font M I. 2012a. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in Mainland Spain. Plant Disease, 96, 582–582.
Alfaro-Fernández A, Siverio F, Cebrián M, Villaescusa F, Font M. 2012b. ‘Candidatus Liberibacter solanacearum’associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Disease, 96, 581–581.
Anderson J A D, Wright P J, Jaksons P, Puketapu A J, Walker G P. 2018. Assessment of tolerance to zebra chip in potato breeding lines under different insecticide regimes in New Zealand. American Journal of Potato Research, 95, 504–512.
Barnes A M, Taylor N M, Vereijssen J. 2015. Non-crop host plants: Prime real estate for the tomato potato psyllid in New Zealand? New Zealand Plant Protection, 68, 441.
Biosecurity Australia. 2009. Final pest risk analysis report for ‘Candidatus Liberibacter psyllaurous’ in fresh fruit, potato tubers, nursery stock and its vector the tomato-potato psyllid. [2019-05-22]. Candidatus Liberibacter psyllaurous and its vectors.pdf
Bové J M. 2006. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.
Bravo M E, Lopez L P. 2007. Principales plagas del chile de agua en los Valles Centrales de Oaxaca. Fundación Produces Oaxaca AC. pp. 12–15. (in Spanish)
Buchman J L, Sengoda V G, Munyaneza J E. 2011. Vector transmission efficiency of liberibacter by Bactericera cockerelli (Hemiptera: Triozidae) in zebra chip potato disease: Effects of psyllid life stage and inoculation access period. Journal of Economic Entomology, 104, 1486–1495.
Butler C D, Trumble J T. 2012a. Identification and impact of natural enemies of Bactericera cockerelli (Hemiptera: Triozidae) in southern California. Journal of Economic Entomology, 105, 1509–1519.
Butler C D, Trumble J T. 2012b. Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato. Pest Management Science, 68, 865–869.
Butler C D, Trumble J T. 2012c. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Reviews, 5, 87–111.
Calvo F J, Torres-Ruiz A, Velázquez-González J, Rodríguez-Leyva E, Lomeli-Flores J R. 2018. Improved sweetpotato whitefly and potato psyllid control in tomato by combining the mirid dicyphus hesperus (Heteroptera: Miridae) with specialist parasitic wasps. Journal of Economic Entomology, 111, 549–555.
Cameron P J, Wigley P J, Charuchinda B, Walker G P, Wallace A R. 2013. Farm-scale dispersal of Bactericera cockerelli in potato crops measured using Bt mark-capture techniques. Entomologia Experimentalis et Applicata, 148, 161–171.
Cerna E, Ochoa Y, Aguirre L A, Flores M, Landeros J. 2013. Determination of insecticide resistance in four populations of potato psillid Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Phyton-International Journal of Experimental Botany, 82, 63–68.
CIP (International Potato Centre). 2018. Potato facts and figures. [2019-09-11].
CNAS (Center for North American Studies). 2009. Economic Impacts of Zebra Chip on the Texas Potato Industry. Texas A&M AgriLIfe Research, Texas A&M AgriLife Extension, Center for North American Studies, USA.
Crosslin J M, Bester G. 2009. First report of ‘Candidatus Liberibacter psyllaurous’ in zebra chip symptomatic potatoes from California. Plant Disease, 93, 551–551.
Crosslin J M, Hamm P B, Eggers J E, Rondon S I, Sengoda V G, Munyaneza J E. 2014. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington State. Plant Disease, 96, 452–452.
Crosslin J M, Munyaneza J E. 2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research, 86, 183–187.
Crosslin J M, Munyaneza J E, Brown J K, Liefting L W. 2010. Potato zebra chip disease: A phytopathological tale. Plant Health Progress, 11, 33–33.
Crosslin J M, Olsen N, Nolte P. 2012. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Idaho. Plant Disease, 93, 453–453
Dich J, Zahm S H, Hanberg A, Adami H O. 1997. Pesticides and cancer. Cancer Causes & Control, 8, 420–443.
Ding J, Mack R N, Lu P, Ren M, Huang H. 2008. China’s booming economy is sparking and accelerating biological invasions. AIBS Bulletin, 58, 317–324.
Dohmen-Vereijssen J, Jorgensen N, Taylor N, Butler R, Berry N, Scott I, Thompson S, Davidson M, Barnes A. 2013. Movement of Bactericera cockerelli in the New Zealand environment. In: Proceedings of the 13th Annual SCRI Zebra Chip Reporting Session. San Antonio, TX, USA. pp. 24–28.
DPIRD (Department for Primary Industries and Regional Development, Australia). 2018. Tomato potato psyllid. [2019-05-23].
Early R, Bradley B A, Dukes J S, Lawler J J, Olden J D, Blumenthal D M, Gonzalez P, Grosholz E D, Ibañez I, Miller L P, Sorte C J B, Tatem A J. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7, 12485.
EPPO (European Plant Protection Organisation). 2013. Bactericera cockerelli. EPPO Bulletin, 43, 202–208.
FAO (Food and Agriculture Organization). 2018. Online statistical database: Food and agriculture data. FAOSTAT. [2018-09-11].
Geiger F, Bengtsson J, Berendse F, Weisser W W, Emmerson M, Morales M B, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement L W, Dennis C, Palmer C, Oñate J J, Guerrero I, et?al. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11, 97–105.
Gill G. 2006. Tomato psyllid detected in New Zealand. Biosecurity, 69, 10–11.
Goolsby J A, Adamczyk J, Bextine B, Lin D, Munyaneza J E, Bester G. 2007a. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science, 59, 85–94.
Goolsby J A, Bextine B, Munyaneza J E, Setamou M, Adamczyk J, Bester G. 2007b. Seasonal abundance of sharpshooters, leafhoppers, and psyllids associated with potatoes affected by zebra chip disorder. Subtropical Plant Science, 59, 15–23.
Grafton-Cardwell E E, Stelinski L L, Stansly P A. 2013. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annual Review of Entomology, 58, 413–432.
Grimm K D S, Mustafa T, Cooper W R, Munyaneza J E. 2018. Role of ‘Candidatus Liberibacter solanacearum’ and Bactericera cockerelli Haplotypes in zebra chip incidence and symptom severity. American Journal of Potato Research, 95, 709–719.
Guenthner J, Goolsby J, Greenway G. 2012. Use and cost of insecticides to control potato psyllids and zebra chip on potatoes. Southwestern Entomologist, 37, 263–270.
Guédot C, Horton D R, Landolt P J. 2012. Age at reproductive maturity and effect of age and time of day on sex attraction in the potato psyllid Bactericera cockerelli. Insect Science, 19, 585–594.
Hansen A K, Trumble J T, Stouthamer R, Paine T D. 2008. A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied & Environmental Microbiology, 74, 5862–5865.
Henne D, Paetzold L, Workneh F, Rush C. 2010a. Evaluation of potato psyllid cold tolerance, overwintering survival, sticky trap sampling, and effects of Liberibacter on potato psyllid alternate host plants. In: Workneh F, Rush C M. eds., Proceedings of the 10th Annual Zebra Chip Reporting Session, November 2010. Dallas, TX. pp. 149–153.
Henne D, Workneh F, Rush C. 2010b. Movement of Bactericera cockerelli (Heteroptera: Psyllidae) in relation to potato canopy structure, and effects on potato tuber weights. Journal of Economic Entomology, 103, 1524–1530.
Horton D R, Cooper W R, Munyaneza J E, Swisher K D, Echegaray E R, Murphy A F, Rondon S I, Wohleb C H, Waters T D, Jensen A S. 2015. A new problem and old questions: Potato psyllid in the Pacific Northwest. American Entomologist, 61, 234–244.
Jensen A, Rondon S, Murphy A, Echegaray E, Or P C. 2012. Overwintering of the potato psyllid in the Northwest on Solanum dulcamara. Proceedings of the 12th Annual SCRI Zebra Chip Reporting Session, 30, 63–64.
Kaur N, Cooper W R, Duringer J M, Badillo-Vargas I E, Esparza-Díaz G, Rashed A, Horton D R. 2018. Survival and development of potato psyllid (Hemiptera: Triozidae) on Convolvulaceae: Effects of a plant-fungus symbiosis (Periglandula). PLoS ONE, 13, e0201506.
Knowlton G, Janes M. 1931. Studies on the biology of Paratrioza cockerelli (Sulc). Annals of the Entomological Society of America, 24, 283–291.
Knowlton G F, Thomas W L. 1934. Host plants of the potato psyllid. Journal of Economic Entomology, 27, 547.
Lehman R S. 1930. Some observations on the life history of the tomato psyllid (Paratrioza cockerelli Sulc.) (Homoptera). Journal of the New York Entomological Society, 38, 307–312.
Lewis O M, Michels G J, Pierson E A, Heinz K M. 2015. A predictive degree day model for the development of Bctericera cockerelli (Hemiptera: Triozidae) infesting Solanum tuberosum. Environmental Entomology, 44, 1201–1209.
Lévy J G, Scheuring D C, Koym J W, Henne D C, Tamborindeguy C, Pierson E, Miller J C. 2015. Investigations on putative zebra chip tolerant potato selections. American Journal of Potato Research, 92, 417–425.
Liefting L, Perez-Egusquiza Z, Clover G, Anderson J. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease, 92, 1474–1474.
Liefting L W, Sutherland P W, Ward L I, Paice K L, Weir B S, Clover G R G. 2009. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Disease, 93, 208–214.
Linford M B. 1928. Psyllid-yellows (cause undetermined). Plant Disease Report Supplement, 59, 95–99.
Liu D, Trumble J T. 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata, 123, 35–42.
Liu D, Trumble J T, Stouthamer R. 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata, 118, 177–183.
MacDonald F H, Connolly P G, Larsen N J, Walker G P. 2016. The voracity of five insect predators on Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) (tomato potato psyllid; TPP). New Zealand Entomologist, 39, 15–22.
Martin N A. 2008. Host plants of the potato/tomato psyllid: A cautionary tale. The Weta, 35, 12–16.
Martin N A. 2016. Factsheets: Interesting insects and other invertebrates. [2018-10-12].
Martinez A M, Chavarrieta J M, Morales S I, Caudillo K B, Figueroa J I, Diaz O, Bujanos R, Gomez B, Viñuela E, Pineda S. 2015. Behavior of Tamarixia triozae females (Hymenoptera: Eulophidae) attacking Bactericera cockerelli (Hemiptera: Triozidae) and effects of three pesticides on this parasitoid. Environmental Entomology, 44, 3–11.
Merfield C N, Geary I J, Hale R J, Hodge S. 2015. Field evaluation of the effectiveness of mesh crop covers for the protection of potatoes from tomato potato psyllid. New Zealand Journal of Crop and Horticultural Science, 43, 123–133.
Montiel A L, Hail D, Macias-Velasco J F, Powell C M, Bextine B R. 2016. The mitochondrial genome of the potato psyllid, Bactericera cockerelli Sulc., and differences among potato psyllid populations of the United States. Southwestern Entomologist, 41, 347–360.
Morales S I, Martinez A M, Vinuela E, Chavarrieta J M, Figueroa J I, Schneider M I, Tamayo F, Pineda S. 2018. Lethal and sublethal effects on tamarixia triozae (Hymenoptera: Eulophidae), an ectoparasitoid of Bactericera cockerelli (Hemiptera: Triozidae), of three insecticides used on solanaceous crops. Journal of Economic Entomology, 111, 1048–1055.
Munyaneza J E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist, 35, 471–477.
Munyaneza J E. 2015. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry. American Journal of Potato Research, 92, 230–235.
Munyaneza J E. 2012. Zebra chip disease of potato: Biology, epidemiology, and management. American Journal of Potato Research, 89, 329–350.
Munyaneza J E, Crosslin J M, Upton J E. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip,” a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology, 100, 656–663.
Munyaneza J E, Fisher T W, Sengoda V G, Garczynski S F, Nissinen A, Lemmetty A. 2010. Association of “Candidatus Liberibacter solanacearum” with the psyllid, trioza apicalis (Hemiptera: Triozidae) in Europe. Journal of Economic Entomology, 103, 1060–1070.
Munyaneza J E, Sengoda V, Stegmark R, Arvidsson A, Anderbrant O, Yuvaraj J K, Rämert B, Nissinen A. 2012. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Sweden. Plant Disease, 96, 453–453.
Munyaneza J E, Sengoda V G, Sundheim L, Meadow R. 2011. First report of “Candidatus Liberibacter solanacearum” associated with psyllid-affected carrots in Norway. Plant Disease, 96, 454–454.
Murphy A F, Rondon S I, Jensen A S. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. American Journal of Potato Research, 90, 294–296.
Mustafa T, Horton D R, Cooper W R, Swisher K D, Zack R S, Munyaneza J E. 2015. Interhaplotype fertility and effects of host plant on reproductive traits of three haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Environmental Entomology, 44, 300–308.
Nelson W R, Fisher T W, Munyaneza J E. 2011. Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. European Journal of Plant Pathology, 130, 5–12.
Nelson W R, Sengoda V G, Alfaro-Fernandez A O, Font M I, Crosslin J M, Munyaneza J E. 2013. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the mediterranean region. European Journal of Plant Pathology, 135, 633–639.
Nelson W R, Swisher K D, Crosslin J M, Munyaneza J E. 2014. Seasonal dispersal of the potato psyllid, Bactericera cockerelli, into potato crops. Southwestern Entomologist, 39, 177–186.
O’Connell D, Wratten S, Pugh A, Barnes A. 2012. ‘New species association’ biological control? Two coccinellid species and an invasive psyllid pest in New Zealand. Biological Control, 62, 86–92.
PHA (Plant Health Australia). 2010. Threat specific contingency plan. zebra chip complex: Psyllid vector - Bactericera cockerelli and pathogen -Candidatus Liberibacter psyllaurous (syn. Ca. L. solanacearum). Plant Health Australia, Canberra, Australia. [2019-05-23].
Pitman A R, Drayton G M, Kraberger S J, Genet R A, Scott I A. 2011. Tuber transmission of ‘Candidatus Liberibacter solanacearum’ and its association with zebra chip on potato in New Zealand. European Journal of Plant Pathology, 129, 389–398.
Pletsch D J. 1947. The potato psyllid, Paratrioza cockerelli (Sulc): Its biology and control. Montana State College, Agricultural Experiment Station Bulletin, 46, 95.
Prager S M, Vindiola B, Kund G S, Byrne F J, Trumble J T. 2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Sulk) (Hemiptera: Triozidae). Crop Protection, 54, 84–91.
Pugh A R, O’Connell D M, Wratten S D. 2015. Further evaluation of the southern ladybird (Cleobora mellyi) as a biological control agent of the invasive tomato-potato psyllid (Bactericera cockerelli). Biological Control, 90, 157–163.
Puketapu A, Roskruge N. 2011. The tomato-potato psyllid lifecycle on three traditional Maori food sources. Agronomy New Zealand, 41, 167–173.
Ramírez-Ahuja M D L, Rodríguez-Leyva E, Lomeli-Flores J R, Torres-Ruiz A, Guzmán-Franco A W. 2017. Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid, Bactericera cockerelli. Biological Control, 106, 9–15.
Richards B L, Blood H L. 1933. Psyllid yellows of the potato. Journal of Agricultural Research, 46, 189–216.
Rojas P, Rodriguez-Leyva E, Lomeli-Flores J R, Liu T X. 2015. Biology and life history of Tamarixia triozae, a parasitoid of the potato psyllid Bactericera cockerelli. Biocontrol, 60, 27–35.
Rubio-Covarrubias O A, Cadena-Hinojosa M A, Prager S M, Wallis C M, Trumble J T. 2017. Characterization of the tolerance against zebra chip disease in tubers of advanced potato lines from Mexico. American Journal of Potato Research, 94, 342–356.
Rubio-Covarrubias O Á, León A, Humberto I, Ireta Moreno J, Sánchez Salas J A, Fernández Sosa R, Borbón Soto J T, Díaz Hernández C, Garzón Tiznado J A, Rocha Rodríguez R, Cadena Hinojosa M A. 2006. Distribución de la punta morada y Bactericera cockerelli Sulc. en las principales zonas productoras de papa en México. Agricultura Técnica en México, 32, 201–211. (in Spanish)
Secor G A. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93, 574–583.
Secor G A, Rivera V V, Abad J A, Lee I M, Clover G R G, Liefting L W, Li X, De Boer S H. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93, 574–583.
Southwood T R E, Moran V C, Kennedy C E J. 1982. The richness, abundance and biomass of the arthropod communities on trees. Journal of Animal Ecology, 51, 635–649.
Swisher K D, Arp A P, Bextine B R, Álvarez E Y A, Crosslin J M, Munyaneza J E. 2013. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and central America. Southwestern Entomologist, 38, 201–208.
Swisher K D, Henne D C, Crosslin J M. 2014a. Identification of a fourth haplotype of Bactericera cockerelli (Hemiptera: Triozidae) in the United States. Journal of Insect Science, 14, 1–7.
Swisher K D, Munyaneza J E, Crosslin J M. 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology, 41, 1019–1028.
Swisher K D, Sengoda V G, Dixon J, Munyaneza J E, Murphy A F, Rondon S I, Thompson B, Karasev A V, Wenninger E J, Olsen N, Crosslin J M. 2014b. Assessing potato psyllid haplotypes in potato crops in the Pacific Northwestern United States. American Journal of Potato Research, 91, 485–491.
Szczepaniec A, Varela K A, Kiani M, Paetzold L, Rush C M. 2019. Incidence of resistance to neonicotinoid insecticides in Bactericera cockerelli across Southwest U.S. Crop Protection, 116, 188–195.
Teresani G R, Bertolini E, Alfaro-Fernandez A, Martinez C, Tanaka F A O, Kitajima E W, Roselló M, Sanjuán S, Ferrándiz J C, López M M, Cambra M, Font M I. 2014. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in spain and development of a real-time PCR method for its detection. Phytopathology, 104, 804–811.
Teulon D A J, Workman P J, Thomas K L, Nielsen M C. 2009. Bactericera cockerelli: Incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection, 62, 136–144.
Thomas J E, Geering A D W, Maynard G. 2018. Detection of “Candidatus Liberibacter solanacearum” in tomato on Norfolk Island, Australia. Australasian Plant Disease Notes, 13, 1–2.
Thomas K, Jones D, Kumarasinghe L, Richmond J, Gill G, Bullians M. 2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection, 64, 259–268.
Tran L T, Worner S P, Hale R J, Teulon D A J. 2012. Estimating development rate and thermal requirements of Bactericera cockerelli (Hemiptera: Triozidae) reared on potato and tomato by using linear and nonlinear models. Environmental Entomology, 41, 1190–1198.
Vega-Chavez J L, Rodriguez-Leyva E, Lomeli-Flores J R, Sanchez-Valdez V M, Cerna-Chavez E, Uribe L A A. 2016. Development thresholds in Tamarixia triozae, a parasitoid of the potato psyllid. Southwestern Entomologist, 41, 1077–1084.
Venette R, Kriticos D, Magarey R, Koch F, Baker R, Worner S, Gómez Raboteaux N N, Mckenney D W, Dobesberger E J, Yemshanov D, De Barro P J, Hutchison W D, Fowler G, Kalaris T M, Pedlar J. 2010. Pest risk maps for invasive alien species: A roadmap for improvement. Bioscience, 60, 349–362.
Walker P W, Allen G R, Tegg R S, White L R, Wilson C R. 2015. The tomato potato psyllid, Bactericera cockerelli (Sulc, 1909) (Hemiptera: Triozidae): A review of the threat of the psyllid to Australian solanaceous crop industries and surveillance for incursions in potato crops. Austral Entomology, 54, 339–349.
Walker G, MacDonald F, Puketapu A, Fergusson H, Connolly P, Wright P, Anderson J. 2012. A field trial to assess damage by Bactericera cockerelli to early potatoes at Pukekohe. New Zealand Plant Protection, 65, 148–154.
Walker G P, MacDonald F H, Wright P J, Puketapu A J, Gardner-Gee R, Connolly P G, Anderson J A D. 2015. Development of action thresholds for management of Bactericera cockerelli and zebra chip disease in potatoes at Pukekohe, New Zealand. American Journal of Potato Research, 92, 266–275.
Wallis R L. 1951. Potato psyllid selection of host plants. Journal of Economic Entomology, 44, 815–817.
Wallis R L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. USDA Technical Bulletin, 1107, 25.
Wan F H, Yang N W. 2016. Invasion and management of agricultural alien insects in China. Annual Review of Entomology, 61, 77–98.
Wen A M, Johnson C, Gudmestad N C. 2013. Development of a PCR assay for the rapid detection and differentiation of ‘Candidatus Liberibacter solanacearum’ haplotypes and their spatiotemporal distribution in the United States. American Journal of Potato Research, 90, 229–236.
Yang X B, Campos-Figueroa M, Silva A, Henne D C. 2015. Functional response, prey stage preference, and mutual interference of the Tamarixia triozae (Hymenoptera: Eulophidae) on tomato and bell pepper. Journal Economic Entomology, 108, 414–424.
Yang X B, Liu T X. 2009. Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology, 38, 1661–1667.
Zhang H, Fen X, Yu W, Hu H H, Dai X F. 2017. Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture, 16, 2924–2932.
[1] XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1722-1730.
[2] WU Qiu-lin, SHEN Xiu-jing, HE Li-mei, JIANG Yu-ying, LIU Jie, HU Gao, WU Kong-ming. Windborne migration routes of newly-emerged fall armyworm from Qinling Mountains–Huaihe River region, China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 694-706.
[3] CHEN Zu-wen, YANG Yan-chao, ZHANG Jian-feng, JIN Ming-hui, XIAO Yu-tao, XIA Zhi-chao, LIU Yuan-yuan, YU Sai-zhen, YANG Yong-bo, WANG Yuan, LI Yi, LIU Kai-yu. Susceptibility and tissue specificity of Spodoptera frugiperda to Junonia coenia densovirus[J]. >Journal of Integrative Agriculture, 2021, 20(3): 840-849.
[4] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[5] ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li.
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 394-405.
[6] GUO Qing-yun, CHENG Liang, ZHU Hai-xia, LI Wei, WEI You-hai, CHEN Hong-yu, GUO Liang-zhi, WENG Hua, WANG Jian . Herbicidal activity of Aureobasidium pullulans PA-2 on weeds and optimization of its solid-state fermentation conditions[J]. >Journal of Integrative Agriculture, 2020, 19(1): 173-182.
[7] WANG Yu-sheng, TIAN Hu, WAN Fang-hao, ZHANG Gui-fen. Species-specific COI primers for rapid identification of a globally significant invasive pest, the cassava mealybug Phenacoccus manihoti Matile-Ferrero[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1042-1049.
[8] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
[9] XIAO Ya-jing, GAO Tan-tan, PENG Qi, ZHANG Jie, SUN Dong-mei, SONG Fu-ping. Transcriptional profile of gene clusters involved in the methylerythritol phosphate pathway in Bacillus subtilis 916[J]. >Journal of Integrative Agriculture, 2019, 18(3): 644-655.
[10] YUAN Hui-guo, WU Sheng-yong, LEI Zhong-ren,?Silvia I. Rondon, GAO Yu-lin. Sub-lethal effects of Beauveria bassiana (Balsamo) on field populations of the potato tuberworm Phthorimaea operculella Zeller in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 911-918.
No Suggested Reading articles found!