Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (12): 3456-3466    DOI: 10.1016/j.jia.2022.08.060
Special Focus: Integrated Pest Management and Plant Health Advanced Online Publication | Current Issue | Archive | Adv Search |
Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies
DONG Suo-meng1, ZHOU Shao-qun2
1 Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education/Department of Plant Pathology and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

170多年前爱尔兰大饥荒爆发以来,由致病疫霉(Phytophthora infestans)危害导致的晚疫病一直是全球马铃薯产业中最严重的威胁之一,每年造成的产量损失与防治成本以百亿美元计,该病害也位列我国7种一类农作物病害之一。经过过去数十年的不懈研究,研究人员在晚疫病的致病分子机制与田间防控策略等方面已取得了一些重要进展。然而,为满足我国农业减药增效的国家需求,如何确保绿色、高效、可持续的晚疫病防治已成为推进马铃薯产业发展所必须解决的技术问题。本文简要概括了当前马铃薯-致病疫霉分子互作领域的研究进展,总结了从地区微观到大陆宏观尺度上晚疫病防治策略,并探讨了未来作物抗性遗传改良与新型植保技术在晚疫病可持续治理中的作用。



Abstract  

Over 170 years after the infamous Irish Potato Famine, potato late blight (PLB) caused by Phytophthora infestans remains the single most devastating disease of global potato production, causing up to 10 billion USD in yield loss and management costs.  Through decades of research, growers and agronomists in the field as well as laboratory scientists have made significant progress in understanding the molecular pathogenesis process of this critical pathosystem and effective management strategies to control PLB.  Yet, the need to feed an ever-increasing global population under changing climate demands continued improvement in efficient and sustainable PLB management schemes that can be implemented across a broad economic spectrum.  In this review, we briefly summarize the current understanding of the molecular interaction between P. infestans and its host plants, highlight the current integrated pest management strategy to control PLB on local and continental scales, and discuss the potential of further improvement of sustainable PLB control through genetic enhancement of crop resistance and emerging crop protection technologies.

Keywords:  potato late blight       phytophthora infestans       integrated pest management  
Received: 16 September 2021   Accepted: 10 March 2022
Fund: 

This work is supported by the National Natural Science Foundation of China (32130088) and the Guangdong Major Project of Basic and Applied Basic Research, China (2021B0301030004) to Dong Suomeng, and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP) to Zhou Shaoqun.

About author:  Correspondence DONG Suo-meng, E-mail: smdong@njau.edu.cn; ZHOU Shao-qun, E-mail: zhoushaoqun@caas.cn

Cite this article: 

DONG Suo-meng, ZHOU Shao-qun. 2022. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies. Journal of Integrative Agriculture, 21(12): 3456-3466.

Andersson M N, Löfstedt C, Newcomb R D. 2015. Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution, 3, 53.
Apel H, Paudyal M, Richter O. 2003. Evaluation of treatment strategies of the late blight Phytophthora infestans in Nepal by population dynamics modelling. Environmental Modelling and Software, 18, 355–364.
Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, Hatta M A M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo L, Poland J, Bariana H, Jones J D G, et al. 2019. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 37, 139–143.
Avrova A O, Boevink P C, Young V, Grenville-Briggs L J, van West P, Birch P R, Whisson S C. 2008. A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 10, 2271–2284.
Aylor D E. 2003. Spread of plant disease on a continental scale: Role of aerial dispersal of pathogens. Ecology, 84, 1989–1997.
Botero D, Valdés I, Rodríguez M J, Henao D, Danies G, González A F, Restrepo S. 2018. A genome-scale metabolic reconstruction of Phytophthora infestans with the integration of transcriptional data reveals the key metabolic patterns involved in the interaction of its host. Frontiers in Genetics, 10, 244.
Bourke P M A. 1964. Emergence of potato blight, 1843–46. Nature, 203, 805–808.
Cook H T. 1949. Forecasting late blight epiphytotics of potatoes and tomatoes. Journal of Agricultural Research, 78, 554–563.
Copeland R, Dowley L, Moore J. 1993. Vulnerability of the Irish potato industry to harmful 669 organisms. In: Proceedings of Royal Irish Academy Seminar. Royal Irish Academy, Ireland. pp. 95–106.
Cucak M, Moral R A, Fealy R, Lambkin K, Kildea S. 2021. Opportunities for an improved potato late blight management in the Republic of Ireland: Field evaluation of the modified Irish Rules crop disease risk prediction model. Phytopathology, 13, 1349–1360.
Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Current Opinion in Genetics and Development, 35, 57–65.
Dong S, Stam R, Cano L M, Song J, Sklenar J, Yoshida K, Bozkurt T O, Oliva R, Liu Z, Tian M, Win J, Banfield M J, Jones A M E, ven der Hoorn R A L, Kamoun S. 2014. Effector specialization in a lineage of the Irish Potato Famine pathogen. Science, 343, 552–555.
Dou D, Kale S D, Wang X, Jiang R H, Bruce N A, Arredondo F D, Zhang X, Tyler B M. 2008. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell, 20, 1930–1947.
Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W. 2021. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytologist, 229, 501–515.
Fall M, Van der Heyden H, Brodeur L, Leclerc Y, Moreau G, Carisse O. 2015. Spatiotemporal variation in airborne sporangia of Phytophthora infestans: Characterization and initiatives towards improving potato late blight risk estimation. Plant Pathology, 64, 178–190.
Feechan A, Turnbull D, Stevens L J, Engelhardt S, Birch P R J, Hein I, Gilroy E M. 2015. The hypersensitive response in PAMP and effector triggered immune responses. In: Gunawardena A N, McCabe P F, eds., Plant Programmed Cell Death. Springer Publishing, Ireland. pp. 235–268.
Di Francesco A, Milella F, Mari M, Roberti R. 2017. A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144–149.
Fry W E. 2016. Phytophthora infestans: New tools (and old ones) lead to new understanding and precision management. Annual Review of Phytopathology, 54, 529–547.
Fry W E, Birch P R, Judelson H S, Grunwald N J, Danies G, Everts K L, Gevens A J, Gugino B K, Johnson D A, Johnson S B, McGrath M T, Myers K L, Ristaino J B, Roberts P D, Secor G, Smart C D. 2015. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 105, 966–981.
Gao L L, Zheng J T, Millett B P, Bradeen J M. 2013. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber - Phytophthora infestans interactions. BMC Genomics, 14, 340.
Gevens A J, Seidl A C. 2013. First report of late blight caused by Phytophthora infestans clonal lineage US-22 on tomato and potato in Wisconsin. Plant Disease, 97, 423.
Ghislain M, Byarugaba A A, Magembe E, Njoroge A, Rivera C, Román M L, Tovar J C, Gamboa S, Forbes G A, Kreuze J F, Barekye A, Kiggundu A. 2019. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnology Journal, 17, 1119–1129.
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.
Grenville-Briggs L J, Avrova A O, Bruce C R, Williams A, Whisson S C, Birch P R, van West P. 2005. Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genetics Biology, 42, 244–256.
Haas B J, Kamoun S, Zody M C, Jiang R H Y, Handsaker R E, Cano L M, Grabherr M, Kodira C D, Raffaele S, Torto-Alalibo T, Bozkurt T O, Ah-Fong A M, Alvarado L, Anderson V L, Armstrong M R, Avrova A, Baxter L, Beynon J, Boevink P C, Bollmann S R, et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461, 393–398.
Halterman D A, Chen Y, Sopee J, Berduo-Sandoval J, Sánchez-Pérez A. 2010. Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLoS ONE, 5, e10536.
Hansen J G. 2021. Late blight fungicide table. EuroBlight: A potato late blight network for Europe. [2021-09-06]. https://agro.au.dk/forskning/internationale-platforme/euroblight/control-strategies/late-blight-fungicide-table/
Hansen Z R, Knaus B J, Tabima J F, Press C M, Judelson H S, Grunwald N J, Smart C D. 2016. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthora infestans. Journal of Applied Microbiology, 120, 1010–1020.
Hareau G, Kleinwechter U, Pradel W, Suarez V, Okello J, Vikraman S. 2014. Strategic assessment of research priorities for potato. In: CGIAR Research Program on Roots, Tubers and Bananas (RTB). RTB working paper 2014-8. [2021-09-06]. https://www.rtb.cgiar.org
Haverkort A J, Struik P C, Visser R G F, Jacobsen E. 2009. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52, 249–264.
He J, Dou M, Xie J, Hou S, Liu Q, Hu Z, Zhang B, Zheng S, Yin F, Zhang M, Xie C, Lu D, Ding X, Zhu C, Sun R. 2021. Discovery of zeylenone from Uvaria grandiflora as a potential botanical fungicide. Pest Management Science, 27, 5407–5417.
He Q, Naqvi S, McLellan H, Boevink P C, Champouret N, Hein I, Birch P R J. 2018. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proceedings of the National Academy of Sciences of the United States of America, 115, E7834–E7843.
Henshall W, Shtienberg D, Beresford R. 2006. A new potato late blight disease prediction model and its comparison with two previous models. New Zaeland Plant Protection, 59, 150–154.
Hou Y, Zhai Y, Feng L, Karimi H Z, Rutter B D, Zeng L, Choi D S, Zhang B, Gu W, Chen X, Ye W, Innes R W, Zhai J, Ma W. 2019. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe, 25, 153–165.
Jones J D, Dang J L. 2006. The plant immune system. Nature, 444, 323–329.
Judelson H S, Tooley P W. 2000. Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology, 90, 1112–1119.
Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington G J, Maclean D, Cock P J, Leggett R M, Bryan G J, Cardle L, Hein I, Jones J D. 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant Journal, 76, 530–544.
Kamoun S, Furzer O, Jones J D, Judelson H S, Ali G S, Dalio R J, Roy S G, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen X R, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler B M, Grünwald N J, et al. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16, 413–34.
Kamoun S, Lindqvist H, Govers F. 1997. A novel class of elicitin-like genes from Phytophthora infestans. Molecular Plant–Microbe Interactions, 10, 1028–1030.
Kessel G J T, Mullins E, Evenhuis A, Stellingwerf J, Cortes V O, Phelan S, van den Bosch T, Forch M G, Goedhart P, van der Voet H, Lotz L A P. 2018. Development and validation of IPM strategies for the cultivation of cisgenically modified late blight resistant potato. European Journal of Agronomy, 96, 146–155.
King S R F, McLellan H, Boevink P C, Armstrong M R, Bukharova T, Sukarta O, Win J, Kamoun S, Birch P R J, Banfield M J. 2014. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell, 26, 1345–1359.
Kirk W W. 2003. Thermal properties of overwintered piles of cull potatoes. American Journal of Potato Reseach, 80, 145–149.
Kobayashi M, Yoshioka M, Asai S, Nomura H, Kuchimura K, Mori H, Doke N, Yoshioka H. 2012. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. New Phytologist, 196, 223–237.
Kots K, Meijer H J, Bouwmeester K, Govers F, Ketelaar T. 2017. Filamentous actin accumulates during plant cell penetration and cell wall plug formation in Phytophthora infestans. Cellular and Molecular Life Science, 74, 909–920.
Lamichhane J R, Osdaghi E, Behlau F, Köhl J, Jones J B, Aubertot J N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development, 38, 28.
Lee H A, Kim S, Kim S, Choi D. 2017. Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. New Phytologist, 215, 1132–1143.
Lu X, Zheng Y, Zhang F, Yu J, Dai T, Wang R, Tian Y, Xu H, Shen D, Dou D. 2020. A rapid, equipment-free method for detecting Phytophthora infestans in the field using a lateral flow strip-based recombinase polymerase amplification assay. Plant Disease, 104, 2774–2778.
McLeod A, Smart C D, Fry W E. 2003. Characterization of 1,3-beta-glucanase and 1,3;1,4-beta-glucanase genes from Phytophthora infestans. Fungal Genetics Biology, 38, 250–263.
Narouei-Khandan H A, Shakya S K, Garrett K A, Goss E M, Dufault N S, Andrade-Piedra J L, Asseng S, Wallach D, Bruggen A H C V. 2020. BLIGHTSIM: A new potato late blight model simulating the response of Phytophthora infestans to diurnal temperature and humidity fluctuations in relation to climate change. Pathogens, 9, 659.
Naumann M, Koch M, Thiel H, Gransee A, Pawelzik E. 2020. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Research, 63, 121–137.
Nowicki M, Foolad M R, Nowakowska M, Kozik E U. 2012. Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease, 96, 4–17.
Oh S K, Kwon S Y, Choi D. 2014. Rpi-blb2-mediated hypersensitive cell death caused by Phytophthora infestans AVRblb2 requires SGT1, but not EDS1, NDR1, salicylic acid-, jasmonic acid-, or ethylene-mediated signaling. The Plant Pathology Journal, 30, 254–260.
Osman H, Mikes V, Milat M L, Ponchet M, Marion D, Prange T, Maume B F, Vauthrin S, Blein J P. 2001. Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Letters, 489, 55–58.
Pennisi E. 2010. Armed and dangerous. Science, 327, 804–805.
Perez W, Forbes G A. 2010. Potato Late Blight - Technical Manual. International Potato Center Collection, Peru.
Petre B, Kamoun S. 2014. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biology, 12, e1001801.
Poudel A, Pandey M, Shah K, Acharya B, Shrestha J. 2020. Evaluation of fungicides for management of late blight (Phytophthora infestans) of potato. Agrica, 9, 10–17.
Prince D C, Rallapalli G, Xu D, Schoonbeek H J, Cevik V, Asai S, Kemen E, Cruz-Mireles N, Kemen A, Belhaj K, Schornack S, Kamoun S, Holub E B, Halkier B A, Jones J D. 2017. Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biology, 15, 20.
Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson H S, Chen X, Ma W. 2013. Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 45, 330–333.
Randall E, Young V, Sierotzki H, Scalliet G, Birch P R J, Cooke D E L, Csukai M, Whisson S C. 2014. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans. Molecular Plant Pathology, 15, 664–676.
Raymundo R, Andrade-Piedra J, Juárez H, Forbes G, Hijmans R J. 2002. Towards an integrated and universal cropdisease model for potato late blight. In: Lizárraga C, ed., Late Blight: Managing the Global Threat, Proceedings of Global Initiative on Late Blight (GILB) Conference. Hamburg, Germany, 11–13 July 2002. pp. 77–82.
Ristaino J B, Saville A C, Paul R, Cooper D C, Wei Q. 2020. Detection of Phytophthora infestans by loop-mediated osthermal amplification, real-time LAMP, and droplet digital PCR. Plant Disease, 104, 708–716.
Rodewald J, Trognitz B. 2013. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular Plant Pathology, 14, 740–757.
Savary S, Bregaglio S, Willocquet L, Gustafson D, D’Croz D M, Sparks A, Castilla N, Djurle A, Allinne C, Sharma M, Rossi V, Amorim L, Bergamin A, Yuen J, Esker P, McRoberts N, Avelino J, Duveiller E, Koo J, Garrett K. 2017. Crop health and its global impacts on the components of food security. Food Security, 9, 311– 327.
Saville A, Graham K, Grünwald N J, Myers K, Fry W E, Ristaino J B. 2015. Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 99, 659–666.
Seong K, Seo E, Witek K, Li M, Staskawicz B. 2020. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytologist, 227, 1530–1543.
Shi X, Tian Z, Liu J, van der Vossen E A, Xie C. 2012. A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Molecular Biology Reports, 39, 1909–1916.
Shibata Y, Kawakita K, Takemoto D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene-and salicylic acid-mediated signaling pathways. Molecular Plant–Microbe Interactions, 23, 1130–1142.
Shibata Y, Ojika M, Sugiyama A, Yazaki K, Jones D A, Kawakita K, Takemoto D. 2016. The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in pre- and postinvasion defense against Phytophthora infestans in Nicotiana benthamiana. Plant Cell, 28, 1163–1181.
Small I M, Joseph L, Fry W E. 2015. Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Computers and Electronics in Agriculture, 115, 57–65.
Smith L P. 1956. Potato blight forecasting by 90% humidity criteria. Plant Pathology, 5, 83–87.
Song J Q, Bradeen J M, Naess S K, Raasch J A, Wielgus S M, Haberlach G T, Liu J, Kuang H H, Austin-Phillips S, Buell C R, Helgeson J P, Jiang J M. 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 100, 9128–9133.
Tian H, Shen Y, Xiao C, Gao j, Zhang Y. 2013. A new fungicide for potato late blight control - eugenol. Chinese Potato Journal, 27, 162–165. (in Chinses)
Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C. 2015. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant and Cell Physiology, 56, 992–1005.
Turnbull D, Wang H X, Breen S, Malec M, Naqvi S, Yang L N, Welsh L, Hemsley P, Tian Z D, Brunner F, Gilroy E M, Birch P R J. 2019. AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity. Plant Physiology, 180, 571–581.
van der Vossen E, Sikkema A, Hekkert B T L, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. 2003. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal, 36, 867–882.
De Vrieze M, Germanier F, Vuille N, Weisskopf L. 2018. Combining different potato-associated pseudomonas strains for improved biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9, 2573.
Wang X, Zheng K, Cheng W, Li J, Liang X, Shen J, Dou D, Yin M, Yan S. 2021. Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight. Chemical Enginnering Journal, 417, 129327.
Wang Y, Wang Y, Wang Y. 2020. Apoplastic proteases: Powerful weapons against pathogen infection in plants. Plant Communications, 1, 100085.
Van de Weyer A L, Monteiro F, Furzer O J, Nishimura M T, Cevik V, Witek K, Jones J D G, Dangl J L, Weigel D, Bemm F. 2019. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell, 178, 1260–1272.
Whisson S C, Boevink P C, Wang S, Birch P R. 2016. The cell biology of late blight disease. Current Opinion in Microbiology, 34, 127–135.
Witek K, Jupe F, Witek A I, Baker D, Clark M D, Jones J D. 2016. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology, 34, 656–660.
Witek K, Lin X, Karki H S, Jupe F, Witek A I, Steuernagel B, Stam R, van Oosterhout C, Fairhead S, Heal R, Cocker J M, Bhanvadia S, Barrett W, Wu C H, Adachi H, Song T, Kamoun S, Vleeshouwers V G A A, Tomlinson L, Wulff B B H, et al. 2021. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 7, 198–208.
Wu Z H, Ma Q, Sun Z N, Cui H C, Liu H R. 2021. Biocontrol mechanism of Myxococcus fulvus B25-I-3 against Phytophthora infestans and its control efficiency on potato late blight. Folia Microbiologica, 66, 555–567.
Xu X, Pan S K, Cheng S F, Zhang B, Mu D S, Ni P X, Zhang G Y, Yang S, Li R Q, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti S K, Patil V U, Skryabin K G, et al. 2011. Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–195.
Yang L, McLellan H, Naqvi S, He Q, Boevink P C, Armstrong M, Giuliani L M, Zhang W, Tian Z, Zhan J, Gilroy E M, Birch P R. 2016. Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiology, 171, 645–657.
Yao Y, Li Y, Chen Z, Zheng B, Zhang L, Niu B, Meng J, Li A, Zhang J, Wang Q. 2016. Biological control of potato late blight using isolats of Trichoderma. American Journal of Potato Reseach, 93, 33–42.
Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4, 651–654.
Yogendra K N, Dhokane D, Kushalappa A C, Sarmiento F, Rodriguez E, Mosquera T. 2017. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Science, 256, 208–216.
Yogendra K N, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa KA, Duggavathi R, Kushalappa A C. 2015. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. Journal of Experimental Botany, 66, 7377–7389.
Yoshioka M, Adachi A, Sato Y, Doke N, Kondo T, Yoshioka H. 2019. RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre- and post-invasive resistance to potato blight pathogens. Molecular Plant Pathology, 20, 907–922.
Zhang X, Song W, Chen H, Qian Z, Zeng J, Dong S. 2021. Status and prospects of chemical prevention and control of potato late blight. China Plant Protection, 41, 33–39. (in Chinese)
Zhao J H, Zhang T, Liu Q Y, Guo H S. 2021. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. Plant Communications, 2, 100167.
Zhou Q, Tang D, Huang W, Yang Z, Zhang Y, Hamilton J P, Visser R G F, Bachem C W B, Robin Buell C, Zhang Z, Zhang C, Huang S. 2020. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nature Genetics, 52, 1018–1023.
Zhou X T, Jia L J, Wang H Y, Zhao P, Wang W Y, Liu N, Song S W, Wu Y, Su L, Zhang J, Zhong N Q, Xia G X. 2018. The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection. Plant Journal, 95, 1055–1068.
[1] ZHAN Bin-hui, YANG Xiu-ling, Steven A. LOMMEL, ZHOU Xue-ping. Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3445-3455.
[2] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[3] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[4] KONG Liang, WANG Hui-bin, WANG Shuai-shuai, XU Ping-ping, ZHANG Ruo-fang, DONG Suo-meng, ZHENG Xiao-bo.
Rapid detection of potato late blight using a loop-mediated isothermal amplification assay
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1274-1282.
[5] Andrew GALIMBERTI, Andrei ALYOKHIN, Hongchun QU, Jason ROSE .
Simulation modelling of potato virus Y spread in relation to initial inoculum and vector activity
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 376-388.
[6] Somnath Roy, Soma Das, Gautam Handique, Ananda Mukhopadhyay, Narayanannair Muraleedharan. Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): A review[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2115-2127.
[7] HUANG Jia; WU Shun-fan and YE Gong-yin. Evaluation of Lethal Effects of Chlorantraniliprole on Chilo suppressalis and Its Larval Parasitoid, Cotesia chilonis[J]. >Journal of Integrative Agriculture, 2011, 10(7): 1134-1138.
[8] Stuart R Reitz, GAO Yu-lin and LEI Zhong-ren. Thrips: Pests of Concern to China and the United States[J]. >Journal of Integrative Agriculture, 2011, 10(6): 867-892.
No Suggested Reading articles found!