Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (1): 178-190    DOI: 10.1016/S2095-3119(20)63349-4
Special Issue: 昆虫合辑Plant Protection—Entomolgy
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars
LAN Hao*, ZHANG Zhan-feng*, WU Jun, CAO He-he, LIU Tong-xian
Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

植物抗虫性主要依靠限制害虫营养和有毒有害物质,但是,营养和有毒物质在植物抗蚜虫中的相对重要性仍未确定。在本论文中,我们探究了抗性小麦品种小偃22和易感小麦品种西农979对麦长管蚜的生长发育、繁殖、营养摄入量和转录组影响。结果显示,虽然小偃22的韧皮部汁液的营养质量(氨基酸:糖)比西农979的更高,但是,在小偃22上饲养的麦长管蚜的体重和繁殖力均显著低于在西农979上饲养的麦长管蚜。并且,在小偃22上饲养的麦长管蚜的蜜露分泌量也显著低于在西农979上饲养的麦长管蚜,这表明麦长管蚜在小偃22上饲养时,其摄入更少的韧皮部汁液。另外,通过比较在西农979和小偃22上饲养的麦长管蚜的转录组数据,我们发现共有600个差异表达基因,前20条差异表达基因显著富集的KEGG通路中有11条是与营养代谢相关的。我们共找到81个与糖、脂以及氨基酸代谢相关的差异表达基因,其中有59个差异表达基因是在小偃22上饲养的麦长管蚜中显著下调。另外,我们只找到18个与解毒代谢相关的差异表达基因,分别为8个UDP-glucuronosyltransferases,6个cytochromes P450 monooxygenases,1个glutathione S-transferase,2个ATP-binding cassette transporters以及1个major facilitator superfamily transporter,其中有12个差异表达基因是在小偃22上饲养的蚜虫中显著上调。以上结果说明,麦长管蚜从寄主小麦韧皮部获得的营养的数量和质量都对其生长发育很重要;小偃22较高的抗蚜性主要源于限制麦长管蚜取食韧皮部汁液,而非单纯依靠有毒物质。




Abstract  
Plant resistance against insects mainly depends on nutrient restriction and toxic metabolites, but the relative importance of nutrition and toxins remains elusive.  We examined performance, nutrition ingestion, and transcriptome response of the English grain aphid, Sitobion avenae, feeding on resistant Xiaoyan 22 (XY22) and susceptible Xinong 979 (XN979) wheat cultivars.  Aphids had lower body weight and fecundity when feeding on XY22 than on XN979, although the phloem sap of XY22 had a higher nutritive quality (in terms of amino acid:sucrose ratio).  Aphids feeding on XY22 also had a lower honeydew excretion rate than those on XN979, suggesting that aphids ingested less phloem sap from XY22.  The transcriptome data showed 600 differentially expressed genes (DEGs), and 11 of the top 20 KEGG pathways significantly enriched in DEGs were involved in nutrient metabolism.  We found 81 DEGs associated with the metabolism of sugars, lipids, and amino acids, 59 of which were significantly downregulated in aphids feeding on XY22.  In contrast, there were 18 DEGs related to detoxifying metabolism, namely eight UDP-glucuronosyltransferases, six cytochromes P450 monooxygenases, one glutathione S-transferase, two ATP-binding cassette transporters, and one major facilitator superfamily transporter; 12 of these were upregulated in the aphids feeding on XY22.  Our results indicated that both the quantity and quality of phloem nutrition available to aphids are critical for the growth and development of aphids, and the higher resistance of XY22 is mainly due to the reduction in phloem sap ingested by aphids, rather than toxic metabolites.
 
Keywords:  plant–aphid interaction        transcriptome response        nutrition restriction  
Received: 04 February 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31272089). We are grateful for the assistance of all the members in the Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
Corresponding Authors:  Correspondence CAO He-he, Mobile: +86-15829727715, E-mail: caohehe1988@163.com; LIU Tong-xian, Tel: +86-29-87092663, E-mail: txliu@nwsuaf.edu.cn    
About author:  LAN Hao, E-mail: lan@nwafu.edu.cn; ZHANG Zhan-feng, E-mail: zhanfengfwjt@nwafu.edu.cn; * These authors contributed equally to this study.

Cite this article: 

LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. 2021. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars. Journal of Integrative Agriculture, 20(1): 178-190.

Aljbory Z, Chen M S. 2018. Indirect plant defense against insect herbivores: A review. Insect Science, 25, 2–23.
Argandoña V H, Zuñiga G E, Corcuera L J. 1987. Distribution of gramine and hydroxamic acids in barley and wheat leaves. Phytochemistry, 26, 1917–1918.
Cao H H, Liu H R, Zhang Z F, Liu T X. 2016. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Scientific Reports, 6, 21954.
Cao H H, Pan M Z, Liu H R, Wang S H, Liu T X. 2015. Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat cultivar. Bulletin of Entomological Research, 105, 448–455.
Celorio-Mancera M D L P, Wheat C W, Vogel H, Söderlind L, Janz N, Nylin S. 2013. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq. Molecular Ecology, 22, 4884–4895.
Chung S H, Jing X F, Luo Y, Douglas A E. 2018. Targeting symbiosis-related insect genes by RNAi in the pea aphid-Buchnera symbiosis. Insect Biochemistry and Molecular Biology, 95, 55–63.
Davidson N M, Oshlack A. 2014. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology, 15, 410.
Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark R M, Feyereisen R, Van Leeuwen T. 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America, 110, 113–122.
Dixon A F G. 1998. Aphid Ecology. Chapman and Hall, London. p. 300.
Douglas A E. 2003. The nutritional physiology of aphids. Advances in Insect Physiology, 31, 73–140.
Douglas A E, Darby A C, Birkle L M, Walters K F A. 2002. The ecological significance of symbiotic micro-organisms in animals: perspectives from the microbiota of aphids. In: Hails R M, Beringer J, Godfray H C J, eds., Genes in the Environment. Blackwell Scientific Publishers, Oxford. pp. 306–325.
Elek H, Smart L, Martin J, Ahmad S, Gordon-Weeks R, Welham S, Nádasy M, Pickett J A, Werner C P. 2013. The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the birdcherry oat aphid, Rhopalosiphum padi. Annals of Applied Biology, 162, 100–109.
van Emden H F, Harrington R. 2007. Aphids as Crop Pests. CAB International, Wallingford. pp. 1–717.
Fiebig M, Poehling H M, Borgemeister C. 2003. Barley yellow dwarf virus wheat, and Sitobion avenae: A case of trilateral interactions. Entomologia Experimentalis et Applicata, 110, 11–21.
Gould G G, Jones C G, Rifleman P, Perez A, Coleman J S. 2007. Variation in eastern cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behavior of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae). Environmental Entomology, 36, 1212–1225.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
Habib H, Majid K. 2007. Plant protease inhibitors: A defense strategy in plants. Biotechnology and Molecular Biology Review, 2, 68–85.
Handrick V, Robert C A, Ahern K R, Zhou S, Machado R A, Maag D, Glauser G, Fernandez-Penny F E, Chandran J N, Rodgers-Melnik E, Schneider B, Buckler E S, Boland W, Gershenzon J, Jander G, Erb M, Köllner T G. 2016. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. The Plant Cell, 28, 1682–1700.
Heidel-Fischer H M, Vogel H. 2015. Molecular mechanisms of insect adaptation to plant secondary compounds. Insect Science, 8, 8–14.
Hosokawa M. 2008. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 13, 412–431.
Huang X L, Liu D G, Zhang R F, Shi X Q. 2019. Transcriptional responses in defense-related genes of Sitobion avenae (Hemiptera: Aphididae) feeding on wheat and barley. Journal of Economic Entomology, 112, 382–395.
Khakimov B, Jespersen B M, Engelsen S B. 2014. Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography-mass spectrometry and advanced chemometrics. Foods, 3, 569–585.
Li B, Dewey C. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Li X C, Schuler M A, Berenbaum M R. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231–253.
Losvik A, Beste L, Mehrabi S, Jonsson L. 2017. The protease inhibitor CI2c gene induced by bird cherry-oat aphid in barley inhibits green peach aphid fecundity in transgenic Arabidopsis. International Journal of Molecular Sciences, 18, 1317.
Love M I, Huber W, Anders S. 2014. Moderated estimation of old change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.
Makowska B, Bakera B, Rakoczy-Trojanowska M. 2015. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiologiae Plantarum, 37, 176.
Mao W, Berhow M A, Zangerl A R, McGovern J, Berenbaum M R. 2006. Cytochrome P450-mediated metabolism of xanthotoxin by Papilio multicaudatus. Journal of Chemical Ecology, 32, 523–536.
Niemeyer H M. 2009. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: Key defense chemicals of cereals. Journal of Agricultural and Food Chemistry, 57, 1677–1696.
Pereira J F, Sarria A L F, Powers S J, Aradottir G I, Caulfield J C, Martin J, Smart L E, Pickett J A, Birkett M A, Pereira P R V S. 2017. DIMBOA levels in hexaploid Brazilian wheat are not associated with antibiosis against the cereal aphids Rhopalosiphum padi and Sitobion avenae. Theoretical and Experimental Plant Physiology, 29, 61–75.
Puinean A M, Foster S P, Oliphant L, Denholm I, Field L M, Millar N S, Williamson M S, Bass C. 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics, 6, e1000999.
Ramsey J S, Rider D S, Walsh T K, De Vos M, Gordon K H, Ponnala L, Macmil S L, Roe B A, Jander G. 2010. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Molecular Biology, 19 (Suppl 2), 155–164.
Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier Jr M H. 2012. The major facilitator superfamily (MFS) revisited. FEBS Journal, 279, 2022–2035.
Rispe C, Moran N A. 2000. Accumulation of deleterious mutations in endosymbionts: Muller’s ratchet with two levels of selection. American Naturalist, 156, 425–441.
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81–86.
Speed M P, Fenton A, Jones M G, Ruxton G D, Brockhurst M A. 2015. Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208, 1251–1263.
Tamas I, Klasson L, Canback B, Naslund A K, Eriksson A S, Wernegreen J J, Sandstrom J P, Moran N A, Andersson S G E. 2002. 50 million years of genomic stasis in endosymbiotic bacteria. Science, 296, 2376–2379.
Thiele B, Füllner K, Stein N, Oldiges M, Kuhn A J, Hofmann D. 2008. Analysis of amino acids without derivatization in barley extracts by LC-MS-MS. Analytical and Bioanalytical Chemistry, 391, 2663–2672.
War A R, Taggar G K, Hussain B, Taggar M S, Nair R M, Sharma H C. 2018. Plant defence against herbivory and insect adaptations. AoB Plants, 10, doi: 10.1093/aobpla/ply037.
Weibull J, Ronquist F, Brishammar S. 1990. Free amino acid composition of leaf exudates and phloem sap: a comparative study in oats and barley. Plant Physiology, 92, 222–226.
Will T, Furch A C U, Zimmermann M R. 2013. How phloem-feeding insects face the challenge of phloem-located defenses. Frontiers in Plant Science, 4, 336.
Wolfersberger M G. 2000. Amino acid transport in insects. Annual Review of Entomology, 45, 111–120.
Wybouw N, Zhurov V, Martel C, Bruinsma K A, Hendrickx F, Grbi? V, Van Leeuwen T. 2015. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molecular Ecology, 24, 4647–4663.
Xue W X, Fan J, Zhang Y, Xu Q X, Han Z L, Sun J R, Chen J L. 2016. Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS ONE, 11, e161839.
Yu Q Y, Fang S M, Zhang Z, Jiggins C D. 2015. The transcriptome response of Heliconius melpomene larvae to a novel host plant. Molecular Ecology, 25, 4850–4865.
Zhang M, Fang T, Pu G, Sun X, Zhou X, Cai Q. 2013. Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pesticide Biochemistry and Physiology, 107, 44–49.
Züst T, Agrawal A A. 2016. Mechanisms and evolution of plant resistance to aphids. Nature Plants, 2, 15206.
[1] LIN Yue-bing, SHEN Cheng-guo, LIN Er-da, HAO Xing-yu, HAN Xue. Transcriptome response of wheat Norin 10 to long-term elevated CO2 under high yield field condition[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2142-2152.
No Suggested Reading articles found!