An B, Liang M, Chang T, Duan X, Du L, Xu L, Zhang L, Gao
X, Li J, Gao H. 2021. KCRR: A nonlinear machine learning with a modified
genomic similarity matrix improved the genomic prediction efficiency. Briefing in Bioinformatics, 22, 6.
Azodi C B, Pardo J, VanBuren R, de Los Campos G, Shiu S
H. 2020. Transcriptome-based prediction of complex traits in maize. Plant Cell, 32, 139–151.
Bernardo R. 2014. Genomewide selection when major genes
are known. Crop Science, 54, 68–75.
Du L, Chang T, An B, Liang M, Duan X, Cai W, Zhu B, Gao
X, Chen Y, Xu L, Zhang L, Li J, Gao H. 2021. Transcriptome profiling analysis
of muscle tissue reveals potential candidate genes affecting water holding
capacity in Chinese Simmental beef cattle. Scientific Reports, 11,
11897.
Edwards S M, Sørensen I F, Sarup P, Mackay T F, Sørensen
P. 2016. Genomic prediction for quantitative traits is improved by mapping
variants to gene ontology categories in Drosophila melanogaster. Genetics, 203, 1871–1883.
Erbe M, Hayes B J, Matukumalli L K, Goswami S, Bowman P
J, Reich C M, Mason B A, Goddard M E. 2012. Improving accuracy of genomic
predictions within and between dairy cattle breeds with imputed high-density
single nucleotide polymorphism panels. Journal of Dairy Science, 95, 4114–4129.
Fang L, Sahana G, Ma P, Su G, Yu Y, Zhang S, Lund M S,
Sørensen P. 2017. Exploring the genetic architecture and improving genomic
prediction accuracy for mastitis and milk production traits in dairy cattle by
mapping variants to hepatic transcriptomic regions responsive to intra-mammary
infection. Genetics Selection Evolution, 49, 44.
Forsberg S K, Bloom J S, Sadhu M J, Kruglyak L, Carlborg
Ö. 2017. Accounting for genetic interactions improves modeling of individual
quantitative trait phenotypes in yeast. Nature Genetics, 49,
497–503.
Gao N, Martini J W R, Zhang Z, Yuan X, Zhang H, Simianer
H, Li J. 2017. Incorporating gene annotation into genomic prediction of complex
phenotypes. Genetics, 207, 489–501.
García-Ruiz A, Cole J B, VanRaden P M, Wiggans G R,
Ruiz-López F J, Van Tassell C P. 2016. Changes in genetic selection
differentials and generation intervals in US Holstein dairy cattle as a result
of genomic selection. Proceedings of National Academy Sciences of the United States of America, 113,
E3995–E4004.
Hayes B J, Pryce J, Chamberlain A J, Bowman P J, Goddard
M E. 2010. Genetic architecture of complex traits and accuracy of genomic
prediction: Coat colour, milk-fat percentage, and type in Holstein cattle as
contrasting model traits. PLoS Genetics, 6, e1001139.
Hu X, Xie W, Wu C, Xu S. 2019. A directed learning
strategy integrating multiple omic data improves genomic prediction. Plant Biotechnology Journal, 17, 2011–2020.
Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix A
L. 2018. Priority-Lasso: A simple hierarchical approach to the prediction of
clinical outcome using multi-omics data. BMC Bioinformatics, 19,
322.
Li Z, Gao N, Martini J W R, Simianer H. 2019.
Integrating gene expression data into genomic prediction. Frontiers in Genetics, 10, 126.
Martini J W, Gao N, Cardoso D F, Wimmer V, Erbe M,
Cantet R J, Simianer H. 2017. Genomic prediction with epistasis models: On the
marker-coding-dependent performance of the extended GBLUP and properties of the
categorical epistasis model (CE). BMC Bioinformatics, 18,
3.
Martini J W, Wimmer V, Erbe M, Simianer H. 2016.
Epistasis and covariance: How gene interaction translates into genomic
relationship. Theoretical and Applied Genetics, 129,
963–976.
Meuwissen T H, Hayes B J, Goddard M E. 2001. Prediction
of total genetic value using genome-wide dense marker maps. Genetics, 157,
1819–1829.
Moore J K, Manmathan H K, Anderson V A, Poland J A,
Morris C F, Haley S D. 2017. Improving genomic prediction for pre-harvest
sprouting tolerance in wheat by weighting large-effect quantitative trait loci. Crop Science, 57, 1315–1324.
Morgante F, Huang W, Sørensen P, Maltecca C, Mackay T F
C. 2020. Leveraging multiple layers of data to predict drosophila complex
traits. G3 (Bethesda), 10, 4599–4613.
Moser G, Lee S H, Hayes B J, Goddard M E, Wray N R,
Visscher P M. 2015. Simultaneous discovery, estimation and prediction analysis
of complex traits using a bayesian mixture model. PLoS Genetics, 11,
e1004969.
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell
J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads. Nature Biotechnology, 33,
290–295.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M
A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J. 2007. PLINK: A tool
set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81,
559–575.
de Roos A P W, Hayes B J, Spelman R J, Goddard M E.
2008. Linkage disequilibrium and persistence of phase in Holstein-Friesian,
Jersey and Angus cattle. Genetics, 179, 1503–1512.
Sarup P, Jensen J, Ostersen T, Henryon M, Sørensen P.
2016. Increased prediction accuracy using a genomic feature model including
prior information on quantitative trait locus regions in purebred Danish Duroc
pigs. BMC Genetics, 17, 11.
Schaeffer L R. 2006. Strategy for applying genome-wide
selection in dairy cattle. Journal of Animal Breeding and Genetics, 123, 218–223.
Schrag T A, Westhues M, Schipprack W, Seifert F,
Thiemann A, Scholten S, Melchinger A E. 2018. Beyond genomic prediction:
combining different types of omics data can improve prediction of hybrid
performance in maize. Genetics, 208, 1373–1385.
Shabalin A A. 2012. Matrix eQTL: Ultra fast eQTL
analysis via large matrix operations. Bioinformatics, 28,
1353–1358.
Song H, Ye S, Jiang Y, Zhang Z, Zhang Q, Ding X. 2019.
Using imputation-based whole-genome sequencing data to improve the accuracy of
genomic prediction for combined populations in pigs. Genetics Selection Evolution, 51, 58.
Speed D, Balding D J. 2014. MultiBLUP: Improved
SNP-based prediction for complex traits. Genome Research, 24,
1550–1557.
VanRaden P M. 2008. Efficient methods to compute genomic
predictions. Journal of Dairy Science, 91,
4414–4423.
Veerkamp R F, Bouwman A C, Schrooten C, Calus M P. 2016.
Genomic prediction using preselected DNA variants from a GWAS with whole-genome
sequence data in Holstein-Friesian cattle. Genetics Selection Evolution, 48, 95.
Võsa U, Claringbould A, Westra H J, Bonder M J, Deelen
P, Zeng B, Kirsten H, Saha A, Kreuzhuber R, Yazar S, Brugge H, Oelen R, de
Vries D H, van der Wijst M G P, Kasela S, Pervjakova N, Alves I, Favé M J,
Agbessi M, Christiansen M W, et al. 2021. Large-scale cis-
and trans-eQTL analyses identify thousands of genetic loci and polygenic
scores that regulate blood gene expression. Nature Genetics, 53,
1300–1310.
Wen Y J, Zhang H, Ni Y L, Huang B, Zhang J, Feng J Y,
Wang S B, Dunwell J M, Zhang Y M, Wu R. 2018. Methodological implementation of
mixed linear models in multi-locus genome-wide association studies. Briefings in Bioinformatics, 19, 700–712.
Wray N R, Wijmenga C, Sullivan P F, Yang J, Visscher P
M. 2018. Common disease is more complex than implied by the core gene omnigenic
model. Cell, 173, 1573–1580.
Xu S, Xu Y, Gong L, Zhang Q. 2016. Metabolomic
prediction of yield in hybrid rice. Plant Journal, 88, 219–227.
Xu Y, Xu C, Xu S. 2017. Prediction and association
mapping of agronomic traits in maize using multiple omic data. Heredity (Edinb), 119, 174–184.
Yang J, Lee S H, Goddard M E, Visscher P M. 2011. GCTA:
A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 76–82.
Yang J, Zeng J, Goddard M E, Wray N R, Visscher P M.
2017. Concepts, estimation and interpretation of SNP-based heritability. Nature Genetics, 49, 1304–1310.
Yao D W, O’Connor L J, Price A L, Gusev A. 2020. Quantifying
genetic effects on disease mediated by assayed gene expression levels. Nature Genetics, 52, 626–633.
Ye S, Li J, Zhang Z. 2020a. Multi-omics-data-assisted
genomic feature markers preselection improves the accuracy of genomic
prediction. Journal of Animal Science and Biotechnology, 11, 109.
Ye S, Song H, Ding X, Zhang Z, Li J. 2020b.
Pre-selecting markers based on fixation index scores improved the power of
genomic evaluations in a combined Yorkshire pig population. Animal, 14,
1–10.
Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, Li J,
Simianer H. 2014. Improving the accuracy of whole genome prediction for complex
traits using the results of genome wide association studies. PLoS ONE, 9, e93017
Zhou X, Carbonetto P, Stephens M. 2013. Polygenic
modeling with bayesian sparse linear mixed models. PLoS Genetics, 9, e1003264.
Zhou X, Stephens M. 2014. Efficient multivariate linear
mixed model algorithms for genome-wide association studies. Nature Methods, 11, 407–409.
|