Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3331-3345    DOI: 10.1016/j.jia.2023.02.014
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon

CHEN Ke-xin*, DAI Dong-yang*, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan#

Department of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163309, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

甜瓜果肉硬度(Flesh firmness, FF)是农业生产者和消费者关注的一个复杂重要的性状,目前针对甜瓜果肉硬度性状的遗传机制尚不清楚。本研究以软果肉甜瓜“P5”和硬果肉甜瓜“P10”配置杂交组合,构建F2分离群体,通过QTL-SLAF测序和分子标记连锁分析,共鉴定112,844SLAF位点,使用5,919SNP标记构建了总遗传距离为1356.49 cM的连锁图谱。结合两年田间表型分析显示,控制果实长度(Fruit Length, FL)和宽度(Fruit Diameter, FD)的QTLs位点位于同一区间,控制单果重(Single-Fruit Weight, SFW)性状的QTL位于两条不同的染色体上。对于果肉硬度检测到一个主要QTL位点ff2.1位于甜瓜2号染色体0.17 Mb的候选区域。利用429F2单株,将ff2.1候选区间缩小到28.3 kb区域,包含3个候选基因。本研究不仅鉴定了一个控制甜瓜果肉硬度的QTLs位点,同时也为甜瓜基因功能基因的研究提供了理论基础。



Abstract  

Flesh firmness (FF) is an important and complex trait for melon breeders and consumers.  However, the genetic mechanism underlying FF is unclear.  Here, a soft fruit melon (P5) and a hard fruit melon (P10) were crossed to generate F2, and the FF and fruit-related traits were recorded for two years.  By performing quantitative trait locus (QTL) specific-locus amplified fragment (SLAF) (QTL-SLAF) sequencing and molecular marker-linkage analysis, 112 844 SLAF markers were identified, and 5 919 SNPs were used to construct a genetic linkage map with a total genetic distance of 1 356.49 cM.  Ten FF- and fruit-related QTLs were identified.  Consistent QTLs were detected for fruit length (FL) and fruit diameter (FD) in both years, and QTLs for single fruit weight (SFW) were detected on two separate chromosomes in both years.  For FF, the consistent major locus (ff2.1) was located in a 0.17-Mb candidate region on chromosome 2.  Using 429 F2 individuals derived from a cross between P5 and P10, we refined the ff2.1 locus to a 28.3-kb region harboring three functional genes.  These results provide not only a new candidate QTL for melon FF breeding but also a theoretical foundation for research on the mechanism underlying melon gene function.

Keywords:  QTL mapping        flesh firmness        fruit-related traits        melon        and SLAF sequencing  
Received: 10 October 2022   Accepted: 01 November 2022
Fund: We thank the Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences for providing melon plant samples.  This work was supported by the grants from the National Natural Science Foundation of China (31772330 and 32002043), the Natural Science Foundation of the Heilongjiang Province, China (LH2022C065) and the Heilongjiang Bayi Agricultural University Support Program for SanHengSanZong, China (TDJH202004).

About author:  #Correspondence SHENG Yun-yan, Tel: +86-459-6819610, E-mail: shengyunyan@byau.edu.cn * These authors contributed equally to this study.

Cite this article: 

CHEN Ke-xin, DAI Dong-yang, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan. 2023. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon. Journal of Integrative Agriculture, 22(11): 3331-3345.

Amanullah S, Liu S, Gao P, Zhu Z C, Zhu Q L, Fan C, Luan F S. 2018. QTL mapping for melon (Cucumis melo L.) fruit traits by assembling and utilization of novel SNPs based CAPS markers. Scientia Horticulturae236, 18–29.

Ayub R, Guis M, Ben Amor M, Gillot L, Roustan J P, Latché A, Bouzayen M, Pech J C. 1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology14, 862–866.

Bhat J A, Ali S, Salgotra R K, Mir Z A, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh P K, Singh G P, Prabhu K V. 2016. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics7, 221.

Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta J M. 2020. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Frontiers in Plant Science10, 1815.

Chaïb J, Devaux M F, Grotte M G, Robini K, Causse M, Lahaye M, Marty I. 2007. Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. Journal of Experimental Botany58, 1915–1925.

Chao Y U, Wan H H, Bourke P M, Cheng B X, Zhang Q X. 2021. High density genetic map and quantitative trait loci (QTLs) associated with petal number and flower diameter identified in tetraploid rose. Journal of Integrative Agriculture20, 1287–1301.

Chapman N H, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley P G, Poole M, Causse M, King G J, Baxter C, Seymour G B. 2012. High resolution mapping of a fruit firmness-related QTL in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiology159, 1644–1657.

Cuevas H E, Staub J E, Simon P W, Zalapa J E. 2009. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theoretical and Applied Genetics119, 741–756.

Cuevas H E, Staub J E, Simon P W, Zalapa J E, McCreight J D. 2008. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theoretical and Applied Genetics117, 1345–1359.

Dai D Y, Zeng S, Wang L, Li J F, Ji p, Liu H Y, Sheng Y Y. 2022. Identification of fruit firmness QTL ff2.1 by SLAF-BSA and QTL mapping in melon. Euphytica218, 52 .

Díaz A, Martín-Hernández A M, Dolcet-Sanjuan R, Garcés-Claver A, Álvarez J M, Garcia-Mas J, Picó B, Monforte A J. 2017. Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics130, 1837–1856.

Díaz A, Zarouri B, Fergany M, Eduardo I, Alvarez J M, Picó B, Monforte A J. 2014. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). PLoS ONE9, e104188.

Farcuh M, Copes B, Le-Navenec G, Marroquin J, Jaunet T, Chi-Ham C, Van Deynze A. 2020. Texture diversity in melon (Cucumis melo L.): Sensory and physical assessments. Postharvest Biology and Technology159, 111024.

Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S. 2003. Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome46, 235–243.

Fukino N, Ohara T, Monforte A J, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S. 2008. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theoretical and Applied Genetics118, 165–175.

Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa’ar U, Fait A, Halperin E, Kenigswald M, Fallik E, et al. 2018. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant Journal94, 169–191.

Gao Y, Guo Y, Su Z, Yu Y, Zhu Z, Gao P, Wang X. 2020. Transcriptome analysis of genes related to fruit texture in watermelon. Scientia Horticulturae262, 109075.

Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González V M, Puigdomènech P. 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America109, 11872–11877.

Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T. 2015. Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiology168, 1036–1048.

Goulao L F, Oliveira C M. 2008. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology19, 4–25.

Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, Jiao C, Zheng Y, Yang W, Fei Z, Xu Y. 2015. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS ONE10, e0130267.

Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber S E, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, et al. 2010. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics121, 511–533.

Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M. 2018. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis meloDNA Research25, 1–10.

Jiang B, Liu W, Xie D, Peng Q, He X, Lin Y, Liang Z. 2015. High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genomics16, 1035.

Kesh H, Kaushik P. 2021. Advances in melon (Cucumis melo L.) breeding: An update. Scientia Horticulturae282, 110045.

Li R, Sun S, Wang H, Wang K, Yu H, Zhou Z, Xin P, Chu J, Zhao T, Wang H, Li J, Cui X. 2020. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nature Communications11, 5844.

Lian Q, Fu Q, Xu Y, Hu Z, Zheng J, Zhang A, He Y, Wang C, Xu C, Chen B, Garcia-Mas J, Zhao G, Wang H. 2021. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC Plant Biology21, 126.

Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X. 2019. Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica215, 1–12.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Luan F S, Sheng Y Y, Wang Y, Staub J E. 2010. Performance of melon hybrids derived from parents of diverse geographic origins. Euphytica173, 1–16.

Monforte A J, Oliver M, Gonzalo M J, Alvarez J M, Dolcet-Sanjuan R, Arffls P. 2004. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics108, 750–758.

Moreno E, Obando J M, Dos-Santos N, Fernández-Trujillo J P, Monforte A J, Garcia-Mas J. 2008. Candidate genes and QTLs for fruit ripening and softening in melon. Theoretical and Applied Genetics116, 589–602.

Murakami M, Kudo I. 2002. Phospholipase A2. Biochemical Journal131, 285–292.

Nimmakayala P, Tomason Y R, Abburi V L, Alvarado A, Saminathan T, Vajja V G, Salazar G, Panicker G K, Levi A, Wechter W P, McCreight J D, Korol A B, Ronin Y, Garcia-Mas J, Reddy U K. 2016. Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Frontiers in Plant Science7, 1437.

Pan Y P, Wang Y H, McGregor C, Liu S, Luan F S, Gao M L, Weng Y Q. 2020. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics133, 1–21.

Pereira L, Ruggieri V, Pérez S, Alexiou K G, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J. 2018. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biology18, 324.

Pereira L, Santo Domingo M, Argyris J, Mayobre C, Valverde L, Martín-Hernández A M, Pujol M, Garcia-Mas J. 2021. A novel introgression line collection to unravel the genetics of climacteric ripening and fruit quality in melon. Scientific Reports11, 11364.

Pereira L, Santo Domingo M, Ruggieri V, Argyris J, Phillips M A, Zhao G, Lian Q, Xu Y, He Y, Huang S, Pujol M, Garcia-Mas J. 2020. Genetic dissection of climacteric fruit ripening in a melon population segregating for ripening behavior. Horticulture Research7, 187.

Perpiñá G, Esteras C, Gibon Y, Monforte A J, Picó B. 2016. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology16, 154.

Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X, Jiang H, Hong W, Hu G, Zheng H, Chen Q. 2014. A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS ONE9, e104871.

Romero P, Gandía M, Alférez F. 2013. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration. Plant Physiology and Biochemistry70, 287–294.

Sahu P K, Sao R, Mondal S, Vishwakarma G, Gupta S K, Kumar V, Singh S, Sharma D, Das B K. 2020. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review. Plants9, 1355.

Sun L, Zhang Y, Cui H, Zhang L, Sha T, Wang C, Fan C, Luan F, Wang X. 2020. Linkage mapping and comparative transcriptome analysis of firmness in watermelon (Citrullus lanatus). Frontiers in Plant Science11, 831.

Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. 2013. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE8, e58700.

Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifoliumTheoretical and Applied Genetics92, 213–224.

Toivonen P M. 2008. Influence of harvest maturity on cut-edge browning of ‘Granny Smith’ fresh apple slices treated with anti-browning solution after cutting. LWT-Food Science and Technology41, 1607–1609.

Uluisik S, Chapman N H, Smith R, Poole M, Adams G, Gillis R B, Besong T M, Sheldon J, Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk I D, Yang N, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell A L, Harding S E, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology34, 950–952.

Vegas J, Garcia-Mas J, Monforte A J. 2013. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics126, 1531–1544.

Wang J, Su K, Guo Y, Xing H, Zhao Y, Liu Z, Li K, Guo X. 2017. Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing. PLoS ONE12, e0181728.

Wang Y H, Wu D H, Huang J H, Tsao S J, Hwu K K, Lo H F. 2016. Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Botanical Studies57, 19.

Wen Y, Zhang S, Wang J, He J, Cai D, Zhao L, Wang D. 2018. Fine mapping of lobed-leaf genes in two Brassica napus lines using SLAF sequencing. Crop Science58, 1684–1692.

Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X. 2018. The major effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. Plant Journal93, 917–930.

Yang T, Amanullah S, Pan J, Chen G, Liu S, Ma S, Wang X. 2021. Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping. Euphytica217, 1–18.

Yi L, Wang Y, Huang X, Gong Y, Wang S, Dai Z. 2020. Genome-wide identification of flowering time genes in cucurbit plants and revealed a gene ClGA2/KS associate with adaption and flowering of watermelon. Molecular Biology Reports, 471057–1065.

Zalapa J E, Staub J E, McCreight J D, Chung S M, Cuevas H. 2007. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western shipping melon germplasm. Theoretical and Applied Genetics114, 1185–1201.

Zarid M, García-Carpintero V, Esteras C, Esteva J, Bueso M C, Cañizares J, Picó M B, Monforte A. J, Fernández-Trujillo J P. 2021. Transcriptomic analysis of a near-isogenic line of melon with high fruit flesh firmness during ripening. Journal of the Science of Food and Agriculture101, 754–777.

Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. 2013. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biology13, 141.

Zheng Y, Xu F, Li Q, Wang G, Liu N, Gong Y, Li L, Chen Z H, Xu S. 2018. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing. Frontiers in Genetics9, 615.

Zhu W Y, Huang L, Chen L, Yang J T, Wu J N, Qu M L, Yao D Q, Guo C L, Lian H L, He H L, Pan J S, Cai R. 2016. A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science7, 437.

[1] HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2949-2960.
[2] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
No Suggested Reading articles found!